Parabix Technology with icgrep

Robert D. Cameron

School of Computing Science
Simon Fraser University

May 21, 2021

Rob Cameron (SFU)

Parabix/icgrep May 21, 2021 1/29



@ Parabix: Scalable High-Performance Unicode

9 Bitwise Data Parallel Regular Expression Matching

© Programming Framework: Kernels + Stream Sets = Programs
@ icgrep Architecture

© Scalable Performance Results

@ Conclusion

Rob Cameron (SFU) Parabix/icgrep May 21, 2021



Outline

@ Parabix: Scalable High-Performance Unicode
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Parabix Technology

Parabix Concept

@ Programming framework for high-performance data stream
processing.

@ Employs novel algorithms based on bitwise data parallelism.
o Process 128 bytes at a time using 128 bit registers (SSE2).

e Fully utilizes processor wide vector instructions (SIMD).
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Parabix Technology

Parabix Concept

@ Programming framework for high-performance data stream
processing.

@ Employs novel algorithms based on bitwise data parallelism.

o Process 128 bytes at a time using 128 bit registers (SSE2).

e Fully utilizes processor wide vector instructions (SIMD).

Parabix Scalability

@ Parabix scales to use available SIMD register width.

o Intel AVX2 (2013): 256 bytes at a time.
o Intel AVX-512 (2017): 512 bytes at a time.

@ Parabix can also scale to use multiple cores, even on a single data
stream.

@ No changes to application programs required!

v
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Regular Expression Showcase: icgrep

icgrep 1.8
o Full-featured grep implementation using Parabix algorithms.
@ Posix REs: Basic or Extended

o All features except backreferences.

@ Perl-compatible REs (PCRE)
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Regular Expression Showcase: icgrep

icgrep 1.8

o Full-featured grep implementation using Parabix algorithms.
@ Posix REs: Basic or Extended
o All features except backreferences.

@ Perl-compatible REs (PCRE)

UTS #18 - Unicode Regular Expressions
Full Unicode property support.

@ Set operations, e.g., [\p{Greek}&&\p{upper casel}]

@ Grapheme clusters and grapheme cluster mode.

@ Name property with regexp values \p{name=/ATRPLANE/}
o

Canonical and compatible equivalence.

v
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9 Bitwise Data Parallel Regular Expression Matching
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Beyond Byte-At-A-Time

o Traditional regular expression technology processes one code unit at a
time using DFA, NFA or backtracking implementations.

@ Instead consider a bitwise data parallel approach.

o Byte-oriented data is first transformed to 8 parallel bit streams
(Parabix transform).

@ Bit stream j consists of bit j of each byte.

@ Load 128-bit SIMD registers to process 128 positions at a time in
bitwise data parallel fashion (SSE2, ARM Neon, ...).

Or use 256-bit AVX2 registers of newer Intel processors.

Process using bitwise logic, shifting and addition.

Parabix methods have previously been used to accelerate Unicode
transcoding and XML parsing.
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Unbounded Stream Abstraction

Program operations as if all positions in the file are to be processed
simultaneously.

Unbounded bitwise parallelism.

Pablo compiler technology maps to block-by-block processing.

°
°

@ Information flows between blocks using carry bits.

@ LLVM compiler infrastructure for Just-in-Time compilation.
°

Custom LLVM improvements further accelerate processing.
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Marker Streams

@ Marker stream M; indicates the positions that are reachable after
item ¢ in the regular expression.

@ Each marker stream M; has one bit for every input byte in the input
file.

e M;[j] = 1 if and only if a match to the regular expression up to and
including item 7 in the expression occurs at position j — 1 in the input
stream.

@ Conceptually, marker streams are computed in parallel for all positions
in the file at once (bitwise data parallelism).

@ In practice, marker streams are computed block-by-block, where the
block size is the size of a SIMD register in bits.
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Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

input data a453z--b3z--az--a12949z--ca22z7--
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Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

@ Mj marks positions after occurrences of a.

input data a453z--b3z--az--a12949z--ca22z7--
M, A T P 1.....
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Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

@ Mj marks positions after occurrences of a.

@ My marks positions after occurrences of a[0-9] *.

input data a453z--b3z--az--a12949z--ca22z7--
M, A T P 1.....
My B I s 1...111111....111. ..
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Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

@ Mj marks positions after occurrences of a.
@ My marks positions after occurrences of a[0-9] *.

@ M3 marks positions after occurrences of a[0-9]*[z9].

input data a453z--b3z--az--a12949z--ca22z7--

M, Ao U DU 1.....
M, A1l ... 1...111111....111. ..
My ..., 1o ..., 1..... 1.11...... 1..
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Matching Character Class Repetitions with MatchStar

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 11 /29



Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M
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Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M
e Consider My = MatchStar(M;, C)

input data a453z--b3z--az--a12949z--ca22z7--
M, P D D 1.
C = [0-9] B I e 11111..... 11.1..
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Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M
e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1......... 1.....
C = [0-9] B I e 11111..... 11.1..
To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..
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Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M

e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.
°

Bits that change represent matches.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1......... 1.....
C = [0-9] B I e 11111..... 11.1..
To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..
Th=T1oC B 5t 111111111, ..
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Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M

e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.
@ Bits that change represent matches.

@ We also have matches at start positions in Mj.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1......... 1.....

C = [0-9] B I e 11111..... 11.1..

To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..
Th=T1oC B 5t 111111111, ..
My=ToV My .1111........ 1...111111. .. .111. ..
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Matching Equations

The rules for bitwise data parallel regular expression matching can be
summarized by these equations.

Match(m,C) = Advance(CharClass(C) A m)
Match(m, RS) = Match(Match(m, R),S)
Match(m, R|S) = Match(m, R) V Match(m, S))
Match(m,Cx) = MatchStar(m, CharClass(C'))
Match(m, Rx) = m V Match(Match(m, R), Rx)

)
)

Advance(m
MatchStar(m, C

= m+m
= ((mANC)+C)aC)Vvm

The recursive equation is implemented with a while loop.
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© Programming Framework: Kernels + Stream Sets = Programs
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Stream Sets and Buffers

@ A stream set type is of the form N x iK
@ N streams of items, each item of width K = 2% bits

@ All streams in a set are of the same length L (may be unknown).
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Stream Sets and Buffers

Stream Sets

@ A stream set type is of the form N x iK
@ N streams of items, each item of width K = 2F bits
@ All streams in a set are of the same length L (may be unknown).

Buffers
Buffers are storage for segments of stream sets.

@ All of the streams of a set are stored in a single buffer.
@ Stream sets are stored block-at-a-time (significant for N > 1)
(]

Different buffering strategies.

o Full stream length (mmap)

o Fixed length circular buffer.

o Fixed length buffer with copyback.

e Expanding buffer (expands as needed).

v
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Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.
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Kernels

Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

v

Transposition Kernel

@ Input: 1 X i8: a single stream of 8-bit code units (e.g., UTF-8).

@ Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).
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Kernels

Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

v
Transposition Kernel

@ Input: 1 x i8: a single stream of 8-bit code units (e.g., UTF-8).

@ Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).

\

Transposition Subkernels

@ Transposition can actually be divided into 3 stages.
o Stage 1: 1 x i8: to 2 x i4 (2 streams of nybbles).
o Stage 2: 2 x i4: to 4 x i2 (4 streams of bit-pairs).
o Stage 3: 4 x i2: to 8 x i1 (basis bit streams).

v
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Regular Expression Kernels

Character Class Kernels

@ Kernel for the character classes of a regexp: e.g., a[0-9]*[z9]

@ Input: 8 X il: the 8 basis bit streams.
@ Output: 3 x i1: 3 bit streams for [a], [0-9], [z9]
@ Dynamically generated by the Parabix character class compiler (ccc).

May 21, 2021 16 / 29
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Regular Expression Kernels

Character Class Kernels

@ Kernel for the character classes of a regexp: e.g., a[0-9]*[z9]

@ Input: 8 x il: the 8 basis bit streams.
@ Output: 3 x i1: 3 bit streams for [a], [0-9], [z9]
@ Dynamically generated by the Parabix character class compiler (ccc).

V.

Matching Logic Kernels

Kernel for the matching logic: e.g., a[0-9]* [z9]

Input: 3 x il: character class streams

Output: 1 x il: a bit stream of matches found.

Dynamically generated by the Parabix Regular Expression compiler.
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Modular icgrep Kernels

Line Break Kernel

@ Kernel for Unicode line breaks
@ Input: 8 x i1: the 8 basis bit streams.
@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---
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Modular icgrep Kernels

Line Break Kernel

@ Kernel for Unicode line breaks
@ Input: 8 x i1: the 8 basis bit streams.
@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---

Match Scanning Kernel

@ Kernel to generate matched lines.

@ Three inputs:

e 1 x i8: source byte stream
o 1 x il: matches bit stream
e 1 x il: line break bit stream

@ Qutput: 1 x i8 matched line output stream.
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Kernel Composition: Pipelines

Kernels 4+ StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.
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Kernel Composition: Pipelines

Kernels 4+ StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.

v

A 7-Stage icgrep Program

ByteData = MMapSource(FileName)

BasisBits = Transpose(ByteData)
LineEnds = UnicodeLineBreaks(BasisBits)
CharacterClasses = CC_compiler<regexp>(BasisBits)
Matches = RE_compiler<regexp>(CharacterClasses)
MatchedLines = MatchScanner (ByteData, LineEnds, Matches)

StdoutSink (MatchedLines)

v
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@ icgrep Architecture
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Parabix Compilation Architecture: icgrep

RegEx
¥
RegEx Parser [« I Parabix Driver
| RegEx Tra:sformations|
RegEx Zompiler
| Pablo Trantformations| | SIMD Detection |
| Pablo Compiler| | Kernel Libraries|
| Pipeline Compiler SIMD I:ibraries|
| LLVM gompiler Object Cache
\Z

Dynamically-Generated Match Function
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© Scalable Performance Results
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Scalability in Simple String Search

Example: Search for the string "grep”

e Data source: 620 MB Wikibooks document set (15 languages)
@ Boyer-Moore allows grep to skip characters, but IPC poor.
@ icgrep/SSE2 not much faster, but scales up with AVX.
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Scalability in Simple String Search

Example: Search for the string "grep”

e Data source: 620 MB Wikibooks document set (15 languages)

@ Boyer-Moore allows grep to skip characters, but IPC poor.
@ icgrep/SSE2 not much faster, but scales up with AVX.

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 © 3.4 GHz SSE2 758 M 0.37 s
grep i3-5010U @ 2.1 GHz AVX2 757 M 0.54 s

W-2102 @ 2.9 GHz | AVX-512 756 M 0.44 s
i7-3770 @ 3.4 GHz SSE2 1,515 M 0.30 s
icgrep | i3-5010U @ 2.1 GHz AVX2 903 M 0.26 s
W-2102 @ 2.9 GHz | AVX-512 641 M 0.18 s
W-2102 (2 cores) | AVX-512 643 M 0.12s

v
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Case-Insensitive String Search: grep vs. icgrep

Example: Search for the string "find”
Command flag: -i Regex: find
e Data source: 620 MB Wikibooks document set (15 languages)
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Case-Insensitive String Search: grep vs. icgrep

Example: Search for the string "find"

Command flag: -i Regex: find

e Data source: 620 MB Wikibooks document set (15 languages)

v

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE?2 4,454 M 1.07 s
grep -i i3-5010U @ 2.1 GHz AVX2 4,454 M 1.66 s

W-2102 @ 2.9 GHz | AVX-512 4,453M 141 s
i7-3770 © 3.4 GHz SSE2 3,221 M 0.42 s
icgrep -i | i3-5010U @ 2.1 GHz AVX2 1,860 M 0.43 s
W-2102 @ 2.9 GHz | AVX-512 1,181 M 0.28 s
W-2102 (2 cores) AVX-512 1,191 M 0.16 s
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Unicode Categories: grep vs. icgrep

Example: Upper Case Cyrillic
Regex: [\p{Cyrillic}&&\p{Lu}]
grep (PCRE mode) alternative: \p{Cyrillic}(?<=\p{Lu})
e Data source: 620 MB Wikibooks document set (15 languages)
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Unicode Categories: grep vs. icgrep

Example: Upper Case Cyrillic
Regex: [\p{Cyrillic}&&\p{Lu}]
grep (PCRE mode) alternative: \p{Cyrillic}(?<=\p{Lu})
e Data source: 620 MB Wikibooks document set (15 languages)

v

Performance Results

Program Processor SIMD Instructions Time
i7-3770 @ 3.4 GHz SSE2 2,191,635 M | 232.3 s
grep -P | i3-5010U @ 2.1 GHz AVX2 2,191,744 M | 348.0 s
W-2102 @ 2.9 GHz | AVX-512 | 2,191,552 M | 220.8 s
i7-3770 @ 3.4 GHz SSE2 6,678 M 0.85s
icgrep | i3-5010U @ 2.1 GHz AVX2 3,683 M 0.84 s
W-2102 @ 2.9 GHz | AVX-512 2,174 M 0.44 s
W-2102 (2 cores) | AVX-512 2,206 M 0.25s

v
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Large Bounded Repetitions

Example: Lines >= 400 Characters
Regex: .{400}
e Data source: 620 MB Wikibooks document set (15 languages)

@ icgrep has log, algorithm.
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Large Bounded Repetitions

Example: Lines >= 400 Characters

Regex: .{400}
e Data source: 620 MB Wikibooks document set (15 languages)

@ icgrep has log, algorithm.

Performance Results

Program Processor SIMD Instructions Time
i7-3770 @ 3.4 GHz SSE2 2,372,838 M | 2499 s
grep -E | i3-5010U @ 2.1 GHz AVX2 2,354,380 M | 407.8 s
W-2102 @ 2.9 GHz | AVX-512 | 2,354,065 M | 247.1 s
i7-3770 @ 3.4 GHz SSE2 17,410 M 234 s
icgrep | i3-5010U @ 2.1 GHz AVX2 7,938 M 193 s
W-2102 @ 2.9 GHz | AVX-512 15,135 M 241 s
W-2102 (2 cores) | AVX-512 | 15,268 M 1.27 s

v
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Nondeterministic Matching

Example: IP address regex

(25[0-5] |2[0-4] [0-9] | [01]17[0-9] [0-917)
(\. (256[0-5] | 2[0-4] [0-9] | [01] 7 [0-9] [0-9]7)) {3}

e Data source: 620 MB Wikibooks document set (15 languages)
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Nondeterministic Matching

Example: IP address regex

(25[0-5] [2[0-4] [0-9] | [01]7[0-9] [0-917)
(\. (25[0-5] [2[0-4] [0-9] | [01] 7 [0-9] [0-9]7)){3}

e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE2 232,079 M | 213 s
grep -E | i3-5010U @ 2.1 GHz AVX2 232,423 M | 39.5s
W-2102 @ 2.9 GHz | AVX-512 | 232,081 M | 25.6 s
i7-3770 @ 3.4 GHz SSE2 3,720 M 0.49 s
icgrep | i3-5010U @ 2.1 GHz AVX2 2,193 M 0.49 s
W-2102 @ 2.9 GHz | AVX-512 1,349 M 0.32s
W-2102 (2 cores) | AVX-512 1,388 M 0.20 s

v
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Emoji Search: icgrep

Example: Search for Smileys
Regex: \p{name=/SMIL(E|ING)/}
e Data source: 620 MB Wikibooks document set (15 languages)
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Emoji Search:

icgrep

Example: Search for Smileys
Regex: \p{name=/SMIL(E|ING)/}
e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE2 4,610 M 0.55 s
icgrep | i3-5010U @ 2.1 GHz | AVX2 2,687 M 0.59 s
W-2102 @ 2.9 GHz | AVX-512 1,795 M 0.38 s
W-2102 (2 cores) | AVX-512 1,820 M 0.23 s
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@ Conclusion

Rob Cameron (SFU) / May 21, 2021 28 /29



Final Remarks

AVX-512 Scalability

@ Instruction count drops dramatically, CPU time drops significantly.

@ AVX-512 detection and code generation is automatic for Parabix
applications.
@ Performance improvement is automatic with significant reduction in
both instruction count and execution time in most cases.
o Improvement of core libraries is an ongoing area of work.
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Final Remarks

AVX-512 Scalability

@ Instruction count drops dramatically, CPU time drops significantly.

@ AVX-512 detection and code generation is automatic for Parabix
applications.

@ Performance improvement is automatic with significant reduction in
both instruction count and execution time in most cases.

o Improvement of core libraries is an ongoing area of work.

Parabix Platform

o Kernel 4+ Stream Set model is effective for Parabix program design.

@ Kernel library includes transposition and inverse transposition, stream
filtering and stream expansion.

@ Character class and Unicode property compilers.

@ Pipeline compiler supports segmented multicore parallelism

automatically.
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