Parabix Technology with icgrep

Robert D. Cameron

School of Computing Science
Simon Fraser University

May 21, 2021

Rob Cameron (SFU)

Parabix/icgrep May 21, 2021 1/29

@ Parabix: Scalable High-Performance Unicode

9 Bitwise Data Parallel Regular Expression Matching

© Programming Framework: Kernels + Stream Sets = Programs
@ icgrep Architecture

© Scalable Performance Results

@ Conclusion

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Outline

@ Parabix: Scalable High-Performance Unicode

Rob Cameron (SFU) May 21, 2021 3/29

Parabix Technology

Parabix Concept

@ Programming framework for high-performance data stream
processing.

@ Employs novel algorithms based on bitwise data parallelism.
o Process 128 bytes at a time using 128 bit registers (SSE2).

e Fully utilizes processor wide vector instructions (SIMD).

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 4 /29

Parabix Technology

Parabix Concept

@ Programming framework for high-performance data stream
processing.

@ Employs novel algorithms based on bitwise data parallelism.

o Process 128 bytes at a time using 128 bit registers (SSE2).

e Fully utilizes processor wide vector instructions (SIMD).

Parabix Scalability

@ Parabix scales to use available SIMD register width.

o Intel AVX2 (2013): 256 bytes at a time.
o Intel AVX-512 (2017): 512 bytes at a time.

@ Parabix can also scale to use multiple cores, even on a single data
stream.

@ No changes to application programs required!

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 4 /29

Regular Expression Showcase: icgrep

icgrep 1.8
o Full-featured grep implementation using Parabix algorithms.
@ Posix REs: Basic or Extended

o All features except backreferences.

@ Perl-compatible REs (PCRE)

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 5/29

Regular Expression Showcase: icgrep

icgrep 1.8

o Full-featured grep implementation using Parabix algorithms.
@ Posix REs: Basic or Extended
o All features except backreferences.

@ Perl-compatible REs (PCRE)

UTS #18 - Unicode Regular Expressions
Full Unicode property support.

@ Set operations, e.g., [\p{Greek}&&\p{upper casel}]

@ Grapheme clusters and grapheme cluster mode.

@ Name property with regexp values \p{name=/ATRPLANE/}
o

Canonical and compatible equivalence.

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 5/29

utline

9 Bitwise Data Parallel Regular Expression Matching

Rob Cameron (SFU) ix, May 21, 2021 6 /29

Beyond Byte-At-A-Time

o Traditional regular expression technology processes one code unit at a
time using DFA, NFA or backtracking implementations.

@ Instead consider a bitwise data parallel approach.

o Byte-oriented data is first transformed to 8 parallel bit streams
(Parabix transform).

@ Bit stream j consists of bit j of each byte.

@ Load 128-bit SIMD registers to process 128 positions at a time in
bitwise data parallel fashion (SSE2, ARM Neon, ...).

Or use 256-bit AVX2 registers of newer Intel processors.

Process using bitwise logic, shifting and addition.

Parabix methods have previously been used to accelerate Unicode
transcoding and XML parsing.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 7 /29

Unbounded Stream Abstraction

Program operations as if all positions in the file are to be processed
simultaneously.

Unbounded bitwise parallelism.

Pablo compiler technology maps to block-by-block processing.

°
°

@ Information flows between blocks using carry bits.

@ LLVM compiler infrastructure for Just-in-Time compilation.
°

Custom LLVM improvements further accelerate processing.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 8 /29

Marker Streams

@ Marker stream M; indicates the positions that are reachable after
item ¢ in the regular expression.

@ Each marker stream M; has one bit for every input byte in the input
file.

e M;[j] = 1 if and only if a match to the regular expression up to and
including item 7 in the expression occurs at position j — 1 in the input
stream.

@ Conceptually, marker streams are computed in parallel for all positions
in the file at once (bitwise data parallelism).

@ In practice, marker streams are computed block-by-block, where the
block size is the size of a SIMD register in bits.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 9 /29

Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

input data a453z--b3z--az--a12949z--ca22z7--

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 10 / 29

Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

@ Mj marks positions after occurrences of a.

input data a453z--b3z--az--a12949z--ca22z7--
M, A T P 1.....

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 10 / 29

Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

@ Mj marks positions after occurrences of a.

@ My marks positions after occurrences of a[0-9] *.

input data a453z--b3z--az--a12949z--ca22z7--
M, A T P 1.....
My B I s 1...111111....111. ..

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Marker Stream Example

o Consider matching regular expression a[0-9]* [z9] against the input
text below.

@ Mj marks positions after occurrences of a.
@ My marks positions after occurrences of a[0-9] *.

@ M3 marks positions after occurrences of a[0-9]*[z9].

input data a453z--b3z--az--a12949z--ca22z7--

M, Ao U DU 1.....
M, A1l ... 1...111111....111. ..
My ..., 1o ..., 1..... 1.11...... 1..

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Matching Character Class Repetitions with MatchStar

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 11 /29

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 11 /29

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M
e Consider My = MatchStar(M;, C)

input data a453z--b3z--az--a12949z--ca22z7--
M, P D D 1.
C = [0-9] B I e 11111..... 11.1..

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M
e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1......... 1.....
C = [0-9] B I e 11111..... 11.1..
To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M

e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.
°

Bits that change represent matches.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1......... 1.....
C = [0-9] B I e 11111..... 11.1..
To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..
Th=T1oC B 5t 111111111, ..

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Matching Character Class Repetitions with MatchStar

e MatchStar(M,C)=(MAC)+C)aC)V M

e Consider My = MatchStar(M;, C)

@ Use addition to scan each marker through the class.
@ Bits that change represent matches.

@ We also have matches at start positions in Mj.

input data a453z--b3z--az--a12949z--ca22z7--

M, B 1...1......... 1.....

C = [0-9] B I e 11111..... 11.1..

To=M NC B 1......... 1.....
Tih=Ty+C B e 1...... 11..
Th=T1oC B 5t 111111111, ..
My=ToV My .1111........ 1...111111. .. .111. ..

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Matching Equations

The rules for bitwise data parallel regular expression matching can be
summarized by these equations.

Match(m,C) = Advance(CharClass(C) A m)
Match(m, RS) = Match(Match(m, R),S)
Match(m, R|S) = Match(m, R) V Match(m, S))
Match(m,Cx) = MatchStar(m, CharClass(C'))
Match(m, Rx) = m V Match(Match(m, R), Rx)

)
)

Advance(m
MatchStar(m, C

= m+m
= ((mANC)+C)aC)Vvm

The recursive equation is implemented with a while loop.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Outline

© Programming Framework: Kernels + Stream Sets = Programs

Rob Cameron (SFU) May 21, 2021 13 /29

Stream Sets and Buffers

@ A stream set type is of the form N x iK
@ N streams of items, each item of width K = 2% bits

@ All streams in a set are of the same length L (may be unknown).

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 14 /29

Stream Sets and Buffers

Stream Sets

@ A stream set type is of the form N x iK
@ N streams of items, each item of width K = 2F bits
@ All streams in a set are of the same length L (may be unknown).

Buffers
Buffers are storage for segments of stream sets.

@ All of the streams of a set are stored in a single buffer.
@ Stream sets are stored block-at-a-time (significant for N > 1)
(]

Different buffering strategies.

o Full stream length (mmap)

o Fixed length circular buffer.

o Fixed length buffer with copyback.

e Expanding buffer (expands as needed).

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 14 /29

Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 15 /29

Kernels

Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

v

Transposition Kernel

@ Input: 1 X i8: a single stream of 8-bit code units (e.g., UTF-8).

@ Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 15 /29

Kernels

Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

v
Transposition Kernel

@ Input: 1 x i8: a single stream of 8-bit code units (e.g., UTF-8).

@ Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).

\

Transposition Subkernels

@ Transposition can actually be divided into 3 stages.
o Stage 1: 1 x i8: to 2 x i4 (2 streams of nybbles).
o Stage 2: 2 x i4: to 4 x i2 (4 streams of bit-pairs).
o Stage 3: 4 x i2: to 8 x i1 (basis bit streams).

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 15 /29

Regular Expression Kernels

Character Class Kernels

@ Kernel for the character classes of a regexp: e.g., a[0-9]*[z9]

@ Input: 8 X il: the 8 basis bit streams.
@ Output: 3 x i1: 3 bit streams for [a], [0-9], [z9]
@ Dynamically generated by the Parabix character class compiler (ccc).

May 21, 2021 16 / 29

Rob Cameron (SFU) Parabix/icgrep

Regular Expression Kernels

Character Class Kernels

@ Kernel for the character classes of a regexp: e.g., a[0-9]*[z9]

@ Input: 8 x il: the 8 basis bit streams.
@ Output: 3 x i1: 3 bit streams for [a], [0-9], [z9]
@ Dynamically generated by the Parabix character class compiler (ccc).

V.

Matching Logic Kernels

Kernel for the matching logic: e.g., a[0-9]* [z9]

Input: 3 x il: character class streams

Output: 1 x il: a bit stream of matches found.

Dynamically generated by the Parabix Regular Expression compiler.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 16 / 29

Modular icgrep Kernels

Line Break Kernel

@ Kernel for Unicode line breaks
@ Input: 8 x i1: the 8 basis bit streams.
@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 17 /29

Modular icgrep Kernels

Line Break Kernel

@ Kernel for Unicode line breaks
@ Input: 8 x i1: the 8 basis bit streams.
@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---

Match Scanning Kernel

@ Kernel to generate matched lines.

@ Three inputs:

e 1 x i8: source byte stream
o 1 x il: matches bit stream
e 1 x il: line break bit stream

@ Qutput: 1 x i8 matched line output stream.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 17 /29

Kernel Composition: Pipelines

Kernels 4+ StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 18 /29

Kernel Composition: Pipelines

Kernels 4+ StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.

v

A 7-Stage icgrep Program

ByteData = MMapSource(FileName)

BasisBits = Transpose(ByteData)
LineEnds = UnicodeLineBreaks(BasisBits)
CharacterClasses = CC_compiler<regexp>(BasisBits)
Matches = RE_compiler<regexp>(CharacterClasses)
MatchedLines = MatchScanner (ByteData, LineEnds, Matches)

StdoutSink (MatchedLines)

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 18 /29

Outline

@ icgrep Architecture

Rob Cameron (SFU) / May 21, 2021 19 /29

Parabix Compilation Architecture: icgrep

RegEx
¥
RegEx Parser [« I Parabix Driver
| RegEx Tra:sformations|
RegEx Zompiler
| Pablo Trantformations| | SIMD Detection |
| Pablo Compiler| | Kernel Libraries|
| Pipeline Compiler SIMD I:ibraries|
| LLVM gompiler Object Cache
\Z

Dynamically-Generated Match Function

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 20 /29

Outline

© Scalable Performance Results

Rob Cameron (SFU) ix, May 21, 2021 21 /29

Scalability in Simple String Search

Example: Search for the string "grep”

e Data source: 620 MB Wikibooks document set (15 languages)
@ Boyer-Moore allows grep to skip characters, but IPC poor.
@ icgrep/SSE2 not much faster, but scales up with AVX.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Scalability in Simple String Search

Example: Search for the string "grep”

e Data source: 620 MB Wikibooks document set (15 languages)

@ Boyer-Moore allows grep to skip characters, but IPC poor.
@ icgrep/SSE2 not much faster, but scales up with AVX.

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 © 3.4 GHz SSE2 758 M 0.37 s
grep i3-5010U @ 2.1 GHz AVX2 757 M 0.54 s

W-2102 @ 2.9 GHz | AVX-512 756 M 0.44 s
i7-3770 @ 3.4 GHz SSE2 1,515 M 0.30 s
icgrep | i3-5010U @ 2.1 GHz AVX2 903 M 0.26 s
W-2102 @ 2.9 GHz | AVX-512 641 M 0.18 s
W-2102 (2 cores) | AVX-512 643 M 0.12s

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 22 /29

Case-Insensitive String Search: grep vs. icgrep

Example: Search for the string "find”
Command flag: -i Regex: find
e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU) Parabix/icgrep May 21, 2021

Case-Insensitive String Search: grep vs. icgrep

Example: Search for the string "find"

Command flag: -i Regex: find

e Data source: 620 MB Wikibooks document set (15 languages)

v

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE?2 4,454 M 1.07 s
grep -i i3-5010U @ 2.1 GHz AVX2 4,454 M 1.66 s

W-2102 @ 2.9 GHz | AVX-512 4,453M 141 s
i7-3770 © 3.4 GHz SSE2 3,221 M 0.42 s
icgrep -i | i3-5010U @ 2.1 GHz AVX2 1,860 M 0.43 s
W-2102 @ 2.9 GHz | AVX-512 1,181 M 0.28 s
W-2102 (2 cores) AVX-512 1,191 M 0.16 s

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 23 /29

Unicode Categories: grep vs. icgrep

Example: Upper Case Cyrillic
Regex: [\p{Cyrillic}&&\p{Lu}]
grep (PCRE mode) alternative: \p{Cyrillic}(?<=\p{Lu})
e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU)

Parabix/icgrep

May 21, 2021

Unicode Categories: grep vs. icgrep

Example: Upper Case Cyrillic
Regex: [\p{Cyrillic}&&\p{Lu}]
grep (PCRE mode) alternative: \p{Cyrillic}(?<=\p{Lu})
e Data source: 620 MB Wikibooks document set (15 languages)

v

Performance Results

Program Processor SIMD Instructions Time
i7-3770 @ 3.4 GHz SSE2 2,191,635 M | 232.3 s
grep -P | i3-5010U @ 2.1 GHz AVX2 2,191,744 M | 348.0 s
W-2102 @ 2.9 GHz | AVX-512 | 2,191,552 M | 220.8 s
i7-3770 @ 3.4 GHz SSE2 6,678 M 0.85s
icgrep | i3-5010U @ 2.1 GHz AVX2 3,683 M 0.84 s
W-2102 @ 2.9 GHz | AVX-512 2,174 M 0.44 s
W-2102 (2 cores) | AVX-512 2,206 M 0.25s

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 24 /29

Large Bounded Repetitions

Example: Lines >= 400 Characters
Regex: .{400}
e Data source: 620 MB Wikibooks document set (15 languages)

@ icgrep has log, algorithm.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 25 /29

Large Bounded Repetitions

Example: Lines >= 400 Characters

Regex: .{400}
e Data source: 620 MB Wikibooks document set (15 languages)

@ icgrep has log, algorithm.

Performance Results

Program Processor SIMD Instructions Time
i7-3770 @ 3.4 GHz SSE2 2,372,838 M | 2499 s
grep -E | i3-5010U @ 2.1 GHz AVX2 2,354,380 M | 407.8 s
W-2102 @ 2.9 GHz | AVX-512 | 2,354,065 M | 247.1 s
i7-3770 @ 3.4 GHz SSE2 17,410 M 234 s
icgrep | i3-5010U @ 2.1 GHz AVX2 7,938 M 193 s
W-2102 @ 2.9 GHz | AVX-512 15,135 M 241 s
W-2102 (2 cores) | AVX-512 | 15,268 M 1.27 s

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 25 /29

Nondeterministic Matching

Example: IP address regex

(25[0-5] |2[0-4] [0-9] | [01]17[0-9] [0-917)
(\. (256[0-5] | 2[0-4] [0-9] | [01] 7 [0-9] [0-9]7)) {3}

e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 26 / 29

Nondeterministic Matching

Example: IP address regex

(25[0-5] [2[0-4] [0-9] | [01]7[0-9] [0-917)
(\. (25[0-5] [2[0-4] [0-9] | [01] 7 [0-9] [0-9]7)){3}

e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE2 232,079 M | 213 s
grep -E | i3-5010U @ 2.1 GHz AVX2 232,423 M | 39.5s
W-2102 @ 2.9 GHz | AVX-512 | 232,081 M | 25.6 s
i7-3770 @ 3.4 GHz SSE2 3,720 M 0.49 s
icgrep | i3-5010U @ 2.1 GHz AVX2 2,193 M 0.49 s
W-2102 @ 2.9 GHz | AVX-512 1,349 M 0.32s
W-2102 (2 cores) | AVX-512 1,388 M 0.20 s

v

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 26 / 29

Emoji Search: icgrep

Example: Search for Smileys
Regex: \p{name=/SMIL(E|ING)/}
e Data source: 620 MB Wikibooks document set (15 languages)

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 27 / 29

Emoji Search:

icgrep

Example: Search for Smileys
Regex: \p{name=/SMIL(E|ING)/}
e Data source: 620 MB Wikibooks document set (15 languages)

Performance Results

Program Processor SIMD Instructions | Time
i7-3770 @ 3.4 GHz SSE2 4,610 M 0.55 s
icgrep | i3-5010U @ 2.1 GHz | AVX2 2,687 M 0.59 s
W-2102 @ 2.9 GHz | AVX-512 1,795 M 0.38 s
W-2102 (2 cores) | AVX-512 1,820 M 0.23 s

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 27 / 29

Outline

@ Conclusion

Rob Cameron (SFU) / May 21, 2021 28 /29

Final Remarks

AVX-512 Scalability

@ Instruction count drops dramatically, CPU time drops significantly.

@ AVX-512 detection and code generation is automatic for Parabix
applications.
@ Performance improvement is automatic with significant reduction in
both instruction count and execution time in most cases.
o Improvement of core libraries is an ongoing area of work.

Rob Cameron (SFU) Parabix/icgrep May 21, 2021 29 /29

Final Remarks

AVX-512 Scalability

@ Instruction count drops dramatically, CPU time drops significantly.

@ AVX-512 detection and code generation is automatic for Parabix
applications.

@ Performance improvement is automatic with significant reduction in
both instruction count and execution time in most cases.

o Improvement of core libraries is an ongoing area of work.

Parabix Platform

o Kernel 4+ Stream Set model is effective for Parabix program design.

@ Kernel library includes transposition and inverse transposition, stream
filtering and stream expansion.

@ Character class and Unicode property compilers.

@ Pipeline compiler supports segmented multicore parallelism

automatically.
Rob Cameron (SFU) Parabix/icgrep May 21, 2021 29 /29

	Parabix: Scalable High-Performance Unicode
	Bitwise Data Parallel Regular Expression Matching
	Programming Framework: Kernels + Stream Sets = Programs
	icgrep Architecture
	Scalable Performance Results
	Conclusion

