
Cybersecurity Lab II

Firewalls

Outline

• What is a Firewall?

• Types of Firewalls
• Packet filtering

• Proxy server

• Evading Firewalls

2

Firewall Overview

3

What is a Firewall?

• A component that stops unauthorized traffic flowing from one
network to another.

4

Firewall

Protected
Network

Network

What is a Firewall?

• Often separates trusted and untrusted networks.

• Differentiates networks within a trusted network.

• Can be implemented in software, hardware, or as a combination.

5

Firewall

Protected
Network

Network

Requirements of a Firewall [Bellovin and Cheswick’94]

• All traffic between two trust zones should pass through a firewall.

• Only authorized traffic, defined by the security policy, should be
allowed to pass through.

• The firewall must be immune to penetration.

6

Firewall Policy

• User Control
• Controls access to data based on the user role

• Often used for users within a firewall zone

• Service Control
• Access is controlled by the type of the service offered by the host protected

by the firewall

• Needs access to network address, port number, protocol etc.

• Direction Control
• Allows traffic based on its direction: inbound or outbound.

7

Firewall Actions

• Network packets going through a firewall result in one of three
actions:

• ACCEPT: Allowed to enter the protected host/network

• DENIED: Not permitted to access the other side of the firewall

• REJECTED: Similar to DENIED.

• But the firewall attempts to tell the source of the packet abouts its decision.

• Using ICMP

8

Ingress and Egress Filtering

• Firewalls can inspect traffic from both directions.

• Ingress filtering

• Egress filtering

9

Other Functions

• Besides protecting a network, a firewall may:
• rewrite packet headers to route packets between networks

• act as a router

• act as a NAT

10

Header

Payload

Header

Payload

Types of Firewalls

11

Types of Firewalls

• Packet Filtering
• Most kernels implement TCP/IP stack

• Filters are executed by hooking to the kernel’s networking stack

• The kernel is in a position to immediately determine the action

• Stateless and Stateful firewalls
• Does a packet belong to a stream of traffic?

Link

Network

Transport

Application

Physical

End-to-End
transport

connection

End-to-End
transport

connection

12

Types of Firewalls

• Application Firewall
• Used to scan web traffic to filter out web application attacks (e.g. SQL injection)

• Often deployed as reverse proxy to impersonate the target it is protecting if a
time delay is necessary to filter traffic

Internal
transport

connection

Link

Network

Transport

Application

Physical

External
transport

connection

Link

Network

Transport

Application

Physical

App. Firewall

13

Packet Filtering Firewall

14

netfilter

netfilter

• A framework inside the Linux kernel

• Allows different networking-related functions to be implemented
• Uses hooks that a program can register with

• As packets traverse the the stack, they will trigger the kernel modules that
have registered with these hooks

15

INPUT

Hooks

Network Drivers

Network Services

kernel

user

OUTPUT

netfilter Hooks

• A packet triggers the kernel modules that are registered with
netfilter hooks

16

NF_IP_POST_ROUTINGNF_IP_PRE_ROUTING Routing NF_IP_FORWARD

NF_IP_LOCAL_IN

Routing

Network
Stack

NF_IP_LOCAL_OUT

Is the pkt destined
for this host, or
another host?

1

2

Consumed by the host Generated by the host

netfilter Calling Order

• Each registered kernel module provides a priority value

• netfilter calls a kernel module based on its priority

• What are possible decisions?

17

netfilter Return Values (targets)

• Each registered kernel module returns one of these values:

• NF_ACCEPT: Let the packet go through the stack

• NF_DROP: Discard the packet

• NF_QUEUE: Pass the packet to the user space

• NF_STOLEN: Ask netfilter to forget this packet, and move responsibility to
the calling module

• NF_REPEAT: Ask netfilter to call the calling module again

18

Example: Block Outgoing Telnet Packets

19

unsigned int telnetFilter(void *priv, struct sk_buff *skb,
 const struct nf_hook_state *state)
{
 struct iphdr *iph;
 struct tcphdr *tcph;

 iph = ip_hdr(skb);
 tcph = (void *)iph+iph->ihl*4;

 if (iph->protocol == IPPROTO_TCP && tcph->dest == htons(23)) {
 return NF_DROP;
 } else {
 return NF_ACCEPT;
 }
}

• https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html

Example: Block Outgoing Telnet Packets

20

static struct nf_hook_ops telnetFilterHook;

int setUpFilter(void) {
 telnetFilterHook.hook = telnetFilter;
 telnetFilterHook.hooknum = NF_INET_POST_ROUTING;
 telnetFilterHook.pf = PF_INET;
 telnetFilterHook.priority = NF_IP_PRI_FIRST;

 // Register the hook
 nf_register_hook(&telnetFilterHook);
 return 0;
}

• Register our hook

Netfilter

iptables

• A packet filter firewall is implemented using iptables

• Userspace program that interfaces with netfilter

• Installs and removes firewall rules

• Can implement stateless and stateful firewalls

21

INPUT

Hooks

Network Drivers

Network Services

kernel

user

OUTPUT

iptables

Table

Table

Table

Rule Organization
• iptables firewall can:

• filter packets, and
• make changes to packets.

• Rules are organized in a hierarchical structure
• Table
• Chain
• Rule

• A table reflects the purpose of the rules

• A chain reflects when a rule is evaluated during the
packet life cycle
• Built-in chains correspond to the netfilter hooks

22

Chain 1

Rule 1

Rule N

…

Chain 2

Rule 1

Rule N

…

Table

Table

filter

Rule Organization

• The table used for firewalls is the filter table

• filter table has three built-in chains:
• INPUT: incoming packets

• FORWARD: packets routed through this machine

• OUTPUT: outgoing packets

23

INPUT

Rule 1

…

FORWARD

Rule 1

…

OUTPUT

Rule 1

…

POST_ROUTINGPRE_ROUTING Routing FORWARD

LOCAL_IN

RoutingNetwork
Stack

LOCAL_OUT

Targets

• A target is the action that is triggered when a packet meets the
matching criteria of a rule.

• Terminating targets: Stops the evaluation within a chain. E.g.,:
• ACCEPT

• Non-Terminating targets: Performs an action and continues the
evaluation within a chain. E.g.,:
• Jumping to user-defined chains

24

Example

25

A B

We will run iptables
at machine A

Checking Rules

26

$ sudo iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

No rules yet!No rules yet!No rules yet!

$ sudo iptables –t filter -F To flush filter table

Scenario 1

Dropping all incoming ICMP echo requests

→ No one can ping machine A

27

$ sudo iptables -A INPUT -p icmp --icmp-type echo-request -j DROP

Scenario 2

Allow others to ssh to machine A

AND

Machine A does not respond to other service request

• What if we switch the rule order?

28

$ sudo iptables -A INPUT -p tcp --destination-port 22 -j ACCEPT
$ sudo iptables -A INPUT -j REJECT

Scenario 2

29

$ sudo iptables –L

Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh
REJECT 0 -- anywhere anywhere reject-with icmp-port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Scenario 2 Takeaways

• REJECT
• The port is closed

• DROP
• The port is closed and invisible to the network

• Rule order is important (within a chain)
• Rules are evaluated top-down

30

raw

Tables

• iptables uses four tables to
organize its rules
• filter, nat, mangle, raw

• These tables classify rules according
to the type of decisions they are used
to make

• It is important to know which chains
are implemented in each table

31

mangle
nat

filter

INPUT

Rule 1

…

FORWARD

Rule 1

…

OUTPUT

Rule 1

…

The filter Table

• Most widely used to implement firewalls

• Decides whether to accept the packet or not

• Implements three chains

32

POST_ROUTINGPRE_ROUTING Routing FORWARD

LOCAL_IN

RoutingNetwork
Stack

LOCAL_OUT

The nat Table

• Determines whether and how to modify the source or destination
addresses
• to impact the way that the packet and any response traffic are routed

• Destination NAT:
• modify the dst address/port (for incoming packets to the private network)

• Source NAT:
• modify the src address/port (for outgoing packets from the private network)

33

POST_ROUTINGPRE_ROUTING Routing FORWARD

LOCAL_IN

RoutingNetwork
Stack

LOCAL_OUT

The mangle Table

• Used to alter the IP header
• E.g., TTL value

• Also, to enable marking the packets
• Other network tools or tables may read this mark to process the packet

differently

• Internal to the kernel (i.e., marking doesn’t modify the actual packet)

34

POST_ROUTINGPRE_ROUTING Routing FORWARD

LOCAL_IN

RoutingNetwork
Stack

LOCAL_OUT

The raw Table

• Used to disable stateful firewall for some packets

• Set the mark called NOTRACK

35

POST_ROUTINGPRE_ROUTING Routing FORWARD

LOCAL_IN

RoutingNetwork
Stack

LOCAL_OUT

Table/Chain Traversal Order

36

Routing

mangle
PREROUTING

mangle
POSTROUTING

mangle
FORWARD

mangle
OUTPUT

mangle
INPUT

nat
PREROUTING

nat
OUTPUT

nat
POSTROUTING

nat
INPUT

filter
FORWARD

filter
OUTPUT

filter
INPUT

Routing

Routing

Network
Stack

PREROUTING POSTROUTING

FORWARD

OUTPUT

INPUT

Example: Determine Table and Chain

• To increase the TTL for all packets
• Packet modification → mangle table

• All packets → PREROUTING chain

37

$ sudo iptables –t mangle -A PREROUTING –j TTL --ttl-inc 5

Extensions

• Adding more functionalities to the core of iptables
• Installing kernel modules

• E.g., conntrack, owner, cgroup, cpu, etc.

38

$ ls /lib/modules/`uname -r`/kernel/net/netfilter/

nf_conntrack_snmp.ko nfnetlink_cttimeout.ko nft_fib.ko
nft_reject_inet.ko xt_comment.ko xt_esp.ko
xt_LOG.ko xt_quota.ko …

Extensions: Examples

• Disable telnet for a specific user

• Using the owner extension
• Available at OUTPUT chain only

39

$ sudo iptables –A OUTPUT –m owner --uid-owner 1000 –j DROP

Extensions: Examples

• Redirecting packets based on the handling CPU number

• Using the cpu extension

40

$ iptables -t nat -A PREROUTING -p tcp --dport 80 -m cpu --cpu 0
-j REDIRECT --to-port 8080

Port forwarding

Building a Simple Firewall

• Requirements
• Allow SSH, HTTP, and ICMP

• Allow loopback interface

• Allow DNS

• Allow VPN and HTTPs

• Allow all outgoing traffic

• What is missing?

• Let’s call it sFW

41

Our sFW: R1

42

iptables -A INPUT -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type any -j ACCEPT

Allow SSH, HTTP, and ICMP

Our sFW: R2

43

iptables -A INPUT -p all -i lo -j ACCEPT

Allow loopback interface

Our sFW: R3

44

iptables -A OUTPUT -p udp --dport 53 -j ACCEPT
iptables -A OUTPUT -p udp --sport 53 -j ACCEPT
iptables -A INPUT -p udp --sport 53 -j ACCEPT
iptables -A INPUT -p udp --dport 53 -j ACCEPT

Allow DNS

Our sFW: R4

45

iptables -A INPUT -p 50 -j ACCEPT
iptables -A INPUT -p 51 -j ACCEPT
iptables -A INPUT -p udp --dport 500 -j ACCEPT
iptables -A INPUT -p udp --dport 10000 -j ACCEPT
iptables -A INPUT -p tcp --dport 443 -j ACCEPT

Allow VPN and HTTPs

Our sFW: R5

46

iptables -P OUTPUT ACCEPT

Allow outgoing traffic

iptables -P INPUT DROP
iptables -P FORWARD DROP

Drop all other traffic

Stateful Firewalls

• Packets are often not independent
• Part of a TCP connection

• ICMP packets triggered by other packets

• Handling such packets independently may lead to inaccurate firewall
• e.g. I want to allow the firewalled device to make connections to 1.2.3.4

• If I don’t know the right services/port numbers, then I have to allow all
response packets from 1.2.3.4

47

Stateful Firewalls

• They monitor incoming and outgoing packets over a period of time
• Record connection state

• Connection state: attributes such as IP addresses, port numbers, sequence
number etc.

• When the state is recorded, filtering decisions can be done
• Note: TCP connection state is not the same as the firewall connection state

• Firewall connection state determines if a packet is part of a flow or not

• Thus, firewall connection state is available for both connection-oriented and
connection-less protocols

48

The Connection Tracking Framework in Linux

• The Linux kernel provides connection tracking framework
• Called nf_conntrack

• Each packet is marked with a connection state:
• NEW:

• The connection is starting

• This state exists for a connection if the firewall has only seen traffic in one direction

• ESTABLISHED:
• Two-way communication has been observed by the firewall

• RELATED:
• A packet that has a relationship with another ESTABLISHED connection

• E.g., ICMP error messages

49

sFW and Connection Tracking

• Let’s enable packets that are part of a stream
• That stream is initiated by our machine

50

iptables -A INPUT -p all -m conntrack --ctstate
ESTABLISHED,RELATED -j ACCEPT

sFW: Putting it All Together

• Requirements
• Allow SSH, HTTP, and ICMP

• Allow loopback interface

• Allow DNS

• Allow VPN and HTTPs

• Allow all outgoing traffic

• Allow established connections

• Drop other traffic

51

Evading Firewalls

52

Recall: Ingress and Egress Filtering

• Firewalls can inspect traffic from both directions.

• Ingress filtering

• Egress filtering

53

Evading Firewalls: Rationale

• Some firewalls are restrictive
• E.g., Egress filtering may block users from reaching out to certain websites or

services

• Tunneling is the main technique to evade firewalls.

pkt

Regular route

54

• Two tunneling mechanisms: SSH tunnels, and VPN

SSH Tunneling

• SSH protocol:
• Is used mainly to log in securely to a machine

• Also supports tunneling and port forwarding

• An SSH tunnel consists of an encrypted link created through SSH
protocol
• Secure file transfers (e.g., FTP over an ssh tunnel)

• Evading (or bypassing) firewalls

55

SSH Tunneling

• Two techniques:
• Tunneling using local port forwarding:

• the local host performs forwarding

• Reverse tunneling using remote port forwarding:
• a remote host performs forwarding

56

Local Port Forwarding: Evading Ingress Filtering

• telnet traffic from home → work is blocked by the firewall

57home

work

23

ramses

telnet
client

telnet
server

22
ssh

server

Local Port Forwarding: Evading Ingress Filtering
• We establish an ssh tunnel: home → ramses

1. On home endpoint, the tunnel receives TCP packets from telnet client

2. The tunnel forwards TCP packets to ramses endpoint

3. At ramses, the data is put in other TCP packets and sent to work

58home

work

ramses

23

22

telnet
client

telnet
server

8000
ssh

client
ssh

server

1

2

3
The firewall sees ssh traffic

Local Port Forwarding: Evading Ingress Filtering
• Create an ssh tunnel:

59home

work

ramses

23

22

telnet
client

telnet
server

8000
ssh

client
ssh

server

1

3

home$ ssh user@ramses–L 8000:work:23

Who performs port
forwarding

Final destination

The firewall sees ssh traffic

2

Local Port Forwarding: Evading Ingress Filtering
• Starting a telnet session at home:

60home

work

ramses

23

22

telnet
client

telnet
server

8000
ssh

client
ssh

server

1

3

home$ telnet localhost:8000

The firewall sees ssh traffic

2

Local Port Forwarding: Evading Egress Filtering

61

work

facebook

80
http
server

• Some Internet services may be blocked to users

Web browser

Local Port Forwarding: Evading Egress Filtering

62

home

work

facebook

8000

80

ssh
client22

ssh
server

http
server

• We establish an ssh tunnel: work → home to access an Internet
service

Web browser

The firewall sees ssh traffic

Local Port Forwarding: Evading Egress Filtering

63

home

work

facebook

8000

80

ssh
client22

ssh
server

http
server

Web browser

• Create an ssh tunnel:

work$ ssh user@home–L 8000:facebook.com:80

The firewall sees ssh traffic

Local Port Forwarding: Evading Egress Filtering

64

home

work

facebook

8000

80

ssh
client22

ssh
server

http
server

Web browser

• Visit the website (from the browser) localhost:8000

The firewall sees ssh traffic

Local Port Forwarding: Dynamic Port Forwarding

• Previous techniques use static port forwarding

• What happens if the firewall blocks many services?

65

ssh client

Creating/maintaining individual tunnels is complex

Local Port Forwarding: Dynamic Port Forwarding

• Dynamic port forwarding allows configuring one local port for
tunnelling data to all remote destinations

• This is done by creating a SOCKS proxy

66

home

work

9000
SOCKS
proxy22

ssh
server

Web browser

facebook youtube git
work$ ssh –D 9000 user@home

• The application (e.g., Web browser) needs to support SOCKS

Remote Port Forwarding

• Used to access a service inside a private network
• Especially, when inbound ssh is not allowed, but outbound ssh is allowed

67

web-server

80

Web
browser

Web
server

ssh
client

workhome

Remote Port Forwarding
• We create a reverse SSH tunnel from work

• On home, the user sends HTTP requests to port 8000

• SSH tunnel forwards the requests to the SSH client on work

• work forwards traffic to web-server

68

web-server

80

Web
browser

Web
server

8000
ssh

server
ssh

client

workhome

Remote Port Forwarding
• We create a reverse SSH tunnel

69

web-server

80

Web
browser

Web
server

8000
ssh

server
ssh

client

workhome

work$ ssh –R 8000:web-server:80 user@home

Questions?

70

	Default Section
	Slide 1: Firewalls
	Slide 2: Outline
	Slide 3: Firewall Overview
	Slide 4: What is a Firewall?
	Slide 5: What is a Firewall?
	Slide 6: Requirements of a Firewall [Bellovin and Cheswick’94]
	Slide 7: Firewall Policy
	Slide 8: Firewall Actions
	Slide 9: Ingress and Egress Filtering
	Slide 10: Other Functions
	Slide 11: Types of Firewalls
	Slide 12: Types of Firewalls
	Slide 13: Types of Firewalls
	Slide 14: Packet Filtering Firewall
	Slide 15: netfilter
	Slide 16: netfilter Hooks
	Slide 17: netfilter Calling Order
	Slide 18: netfilter Return Values (targets)
	Slide 19: Example: Block Outgoing Telnet Packets
	Slide 20: Example: Block Outgoing Telnet Packets
	Slide 21: iptables
	Slide 22: Rule Organization
	Slide 23: Rule Organization
	Slide 24: Targets
	Slide 25: Example
	Slide 26: Checking Rules
	Slide 27: Scenario 1
	Slide 28: Scenario 2
	Slide 29: Scenario 2
	Slide 30: Scenario 2 Takeaways
	Slide 31: Tables
	Slide 32: The filter Table
	Slide 33: The nat Table
	Slide 34: The mangle Table
	Slide 35: The raw Table
	Slide 36: Table/Chain Traversal Order
	Slide 37: Example: Determine Table and Chain
	Slide 38: Extensions
	Slide 39: Extensions: Examples
	Slide 40: Extensions: Examples
	Slide 41: Building a Simple Firewall
	Slide 42: Our sFW: R1
	Slide 43: Our sFW: R2
	Slide 44: Our sFW: R3
	Slide 45: Our sFW: R4
	Slide 46: Our sFW: R5
	Slide 47: Stateful Firewalls
	Slide 48: Stateful Firewalls
	Slide 49: The Connection Tracking Framework in Linux
	Slide 50: sFW and Connection Tracking
	Slide 51: sFW: Putting it All Together
	Slide 52: Evading Firewalls
	Slide 53: Recall: Ingress and Egress Filtering
	Slide 54: Evading Firewalls: Rationale
	Slide 55: SSH Tunneling
	Slide 56: SSH Tunneling
	Slide 57: Local Port Forwarding: Evading Ingress Filtering
	Slide 58: Local Port Forwarding: Evading Ingress Filtering
	Slide 59: Local Port Forwarding: Evading Ingress Filtering
	Slide 60: Local Port Forwarding: Evading Ingress Filtering
	Slide 61: Local Port Forwarding: Evading Egress Filtering
	Slide 62: Local Port Forwarding: Evading Egress Filtering
	Slide 63: Local Port Forwarding: Evading Egress Filtering
	Slide 64: Local Port Forwarding: Evading Egress Filtering
	Slide 65: Local Port Forwarding: Dynamic Port Forwarding
	Slide 66: Local Port Forwarding: Dynamic Port Forwarding
	Slide 67: Remote Port Forwarding
	Slide 68: Remote Port Forwarding
	Slide 69: Remote Port Forwarding
	Slide 70: Questions?

