SF SIMON FRASER UNIVERSITY cYbersecurity Lab Il
ENGAGING THE WORLD

Return-to-libc

Recap: The Mistakes of StackGuard and Shadow Stack

The mistake: The attacker can only overwrite the return address.

* The attacker can modify local variables
* Ones that are used in authentication
* Function pointers

* The attacker can modify EBP
* Frame pointer overwrite attack
* EBP points to a fake frame inside the buffer
* More details

e Assumes only the stack can be attacked!

http://phrack.org/issues/55/8.html#article

Recap: NOEXEC (WAX)

* WAX = No single region is both writable and executable!

* Deployed in major OS
* Linux
* Windows

* Hardware Support
* Intel: XD bit (XD = execute disable)

* AMD: NX bit

Recap...

e StackGuard, Shadow Stack - We learned how to defeat these two

* NOEXEC (WAX) < Today, how we can defeat W”X.

* ASLR

Limitation of WAX

* Only defends against injecting code on the stack/heap

e Can we hijack the control flow and point to code that is not on the
stack/heap?

» Where would such code be?

Our Goal

* To achieve control hijacking without relying on code injection

* The attacker controls the program flow by directing it to a different:

* Function inside the program —-> Function re-use attack
* Function inside libc - Return-to-libc Attack

* Sequence of instructions — Return-oriented programming (ROP)

Function Re-use Attack

void bad() {

system(“/bin/sh”); $ gcc jmp_to_fn.c -o jmp_to_fn
-fno-stack-protector -m32

int fn(char* str) {
char* buffer[48];
strcpy(buffer, str);
return 1;

Check if the stack is not executable...

S readelf =l jmp_to fn

Elf file type is EXEC (Executable file)

Entry point 0x80483f0

There are 9 program headers, starting at offset 52

GNU_STACK OX000000 X000 OXOVVVYYYYO
OxX00000 0x00VV0 RW 0x10

Function Re-use Attack

* Checking bad address
$ objdump -d jmp _to fn | grep bad
©80484eb <bad>:

e Use it as the return address:
00000000 9090909090909090 9090909090909090 |.eevvvneeenn...

*

00000030 9090909090909090 90909090 eb 840408 |..cccvvvvununee.

libc

* A library for C standard
* Implementing many functions: $ 1dd /bin/ls

linux-vdso.so.1l (@x@0007ffcc3563000)
libselinux.so.1l => /lib64/libselinux.so.l (@xeeee7f87e5459eee)

e String manipulation libcap.so.2 => /1ib64/libcap.so.2 (@x@0007f87e5254000)
libc.so.6 => /1lib64/libc.so.6 (exeeee7f87ed4e92ee0)

o |() libpcre.so.1 => /1lib64/libpcre.so.l (@x00007f87e4c22000)
libdl.so.2 => /1lib64/1libdl.so.2 (exeeee7f87edaleeee)

° PVqGErT]()r\/ /1ib64/1d-1inux-x86-64.s0.2 (©x@0005574bT122000)
libattr.so.1 => /lib64/libattr.so.l1 (exeeee7f87e4817eee)

° libpthread.so.@ => /1ib64/libpthread.so.® (@xeeee7f87e45fa000)

* We use it almost in every program! REEE S EETEE

e <std*.h> 131 , ,
$ 1dd /usr/bin/* | grep "libc\." | wc -1

e Check your program using 1ldd 1354

Return-to-libc [Solar Desigher ‘97]

e Overwrite the return address to an address of a
function in 11bc

* Instead of relying on the program functions!

int fn(char* str) {
char* buffer[48];
strcpy(buffer, str);
return 1;

Return-to-libc

 Qverwrite the return address to an address of a function in 1ibc

* Instead of relying on the program functions!

local vars

libc

fnl

fn2

Saved BP

Ret. Address

Args

Caller SF

A 4

nN

Useful Functions? ‘

Return-to-libc

 Qverwrite the return address to an address of a function in 1ibc

* Instead of relying on the program functions!

local vars

Look for this pattern

Saved BP

Ret. Address

Args

Caller SF

\ 4

system(“/bin/sh”)

Other 1libc fns

Return-to-libc: First Attempt

* Can we find the pattern system(“/bin/sh”)?
* The attacker may not be lucky!

This pattern may not exist in 1ibc!

NOP Sled
*| system(“/bin/sh”)
NOP Sled Other libc fns
Ret. Address
Args

Caller SF

Return-to-libc: Fake SF

 We need to construct a Fake SF for our attack!
e How would it look?

NOP Sled
system()
NOP Sled Other 1libc fns
Ret. Address
Fake SF

Caller SF

Recall: Function Prologue

es
?—> Ret. Address
Args
ebg_*
Initial state:

The caller pushes args
and return address

esp

—> Saved BP
Ret. Address
Args
ebp
push ebp

esp
—> Saved BP
Ret. Address
Args

mov ebp, esp

ebp

esp

Local Vars

ebp
Saved BP N
Ret. Address
Args

sub esp, <N>

Recall: Function Epilogue

esp

Local Vars

Saved BP

Ret. Address

Args

Initial state

ebp

esp
—> Saved BP
Ret. Address
Args

mov esp, ebp

ebp

es?_* Ret. Address
Args
ebg_’
pop ebp

esp

ebp

With ret instruction, the next instruction to be executed depends on a value in the stack

Args

ret

Now, eip is pointing
to Ret. Address

Return-to-libc: Into the system SF

|

|

|

|

|

|

|

|

NOP Sled :

:

|

|

|

es '
E—» system addr !
Fake SF (?) |

|

:

|

|

Caller SF :

:

|

|

|

|

Initial state: :

The vulnerable function
executes ret

NOP Sled
es
P " Fake SF (2)
Caller SF
After ret

esp

ebp

NOP Sled

Some ebp

Fake SF (?)

Caller SF

system Prologue:
push ebp
mov ebp, esp

sub esp, <N>

esp

ebp

Return-to-libc: Into the system SF

NOP Sled

SOME DD | e

Fake SF (?)

Caller SF

system Prologue:
push ebp

mov ebp, esp
sub esp, <N>

system expects:
ebp+8: str address
ebp+4: return address

esp NOP Sled
eb
P, Some ebp

ret address

Address of str

system’s return

s address

Caller SF

“/bin/sh”

Return-to-libc: Fake SF

* The final payload:

NOP Sled
g system()
NOP Sled Other 1libc fns
Ret. Address
BBBB

Our fake SF {

Address of str

\ 4

“/bin/sh”

Caller SF

Return-to-libc: Fake SF

* How can we find the string address “bin/sh”?
* Option: Keep it in an env. var!

NOP Sled
system()
NOP Sled Other 1libc fns
Ret. Address
BBBB

Our fake SF {

Address of str

“/bin/sh”

Caller SF

Return-to-libc: Steps

* Store “/bin/sh” in an env. variable
 export SHELL=“/bin/sh”

* Find the address of system

* Find the address of the env. variable

Address of system

* Use gdb (after running the program and break at main)
gdb$ p system

$1 = {<text variable, no debug info>} 6xb7dadda®
< libc_ system>

Address of “/bin/sh”

* Use gdb (after running the program and break at main)
* Print few strings from the stack

gdb$ x/300s %$esp

Oxbtftf+f+d57:SHELL=/bin/sh

Oxbffffd57 + 6
Oxbffffdsd

Address of the string

Return-to-libc: Our Stack

gdb$ p system
$1 = {<text variable, no debug info>}

<__libc_system>

oxb7daddao*”

\ 4

system()

NOP Sled Other libc fns

NOP 5Zed Oxbffffd57:SHELL=/bin/sh
X X =/bin/s
Oxb7da4dao
xo/aante Address of the string = Oxbffffd57 + 6
Our fake SF Skl
oxbffffd5d
Caller SF oxbffffdsd 4«

\ 4

“/bin/sh”

Return-to-libc: Our Stack

* SIGSEGV on exit...
e How can we fix this issue?

Our fake SF {

NOP Sled

Oxb7daddao

NOP Sled

Oxb7daddao

BBBB

Oxbffffd5d

Caller SF

\ 4

system()

Other 1libc fns

ret at systemset IP to OXBBBB

oxbffffd5d

A 4

“/bin/sh”

Return-to-libc: Our Stack

* The return address of system need to point to exit

Oxb7da4dao
> system()
NOP Sled
NOP Sled Oxb7d989d0
Oxb7da4dao > exit()
Oxb7d989d0
Our fake SF { P Other libc fns
Caller S oxbffffd5d
> “/bin/sh”

Return-to-libc: Injecting NULL Bytes

* Assume we want to call a function FUNC that takes three arguments
* We want third argument to be NULL
* How can we do it?

NOP Sled
Oxbffffd5d
ARG1 < Oxb7dadda0
DFEEEdEF Oxb7daddao > FUNC()
X 6 oxb7d989d0
ARG2 “ Oxbffffd5d
Oxbffffd6f 9xb7d989de
ZERO > exit()
Other libc fns

Return-to-libc: Injecting NULL Bytes

* How can we write a specific value to a specific address on the stack?

e Our good friend: printf
Oxbffffaaa

fmt_str = “%5%$n”

A

Oxb7dadbac

\ 4

printf

Oxb7daddao

oxbffFfFdsd xb7dadbac
ARGL ‘ oxbffffaaa
Oxb7daddao
Oxbffffdef oxb 7058500
ARG2 : oxbffffdsd
Oxbffffdef

ZERO

We use %5%$n to write ZERO at the 5t arg of
printf when it’s being executed!

4

FUNC()

Oxb7d989d0

A 4

exit()

Other libc fns

Return-to-libc: Injecting NULL Bytes

* What is the return address after print+f?

Oxbffffaaa

fmt_str = “%5%$n”

A

Oxb7dadbac

\ 4

printf

Oxb7daddff

\ 4

pop ebp
ret

4

Oxb7daddao

oxbffffdsd Glopees e
oxb7dadbff

ARGL ‘ oxbffffaaa
Oxb7daddao

oxbffffdef oxb 7058500
ARG2 : oxbffffdsd
oxbffffdef

ZERO

We use %5%$n to write ZERO at the 5t arg of
printf when it’s being executed!

FUNC()

Oxb7d989d0

A 4

exit()

Other libc fns

ret will
cause
FUNC to be
called

Return-to-libc: Recap

* Bypasses the XAW (NOEXEC) defenses
* No need to inject code to the stack!

NOP Sled

NOP Sled

system()

exit()

Function Addr

“/bin/sh”

Return Addr

Function Args

Caller SF

Return-to-libc: Limitations

* The attacker cannot execute arbitrary code!
e All-or-nothing functions

* [t depends on functions that exist in 1ibc
* Proposals to remove system function

Questions?

	Slide 1: Return-to-libc
	Slide 2: Recap: The Mistakes of StackGuard and Shadow Stack
	Slide 3: Recap: NOEXEC (W^X)
	Slide 4: Recap…
	Slide 5: Limitation of W^X
	Slide 6: Our Goal
	Slide 7: Function Re-use Attack
	Slide 8: Check if the stack is not executable…
	Slide 9: Function Re-use Attack
	Slide 10: libc
	Slide 11: Return-to-libc [Solar Designer ‘97]
	Slide 12: Return-to-libc
	Slide 13: Return-to-libc
	Slide 14: Return-to-libc: First Attempt
	Slide 15: Return-to-libc: Fake SF
	Slide 16: Recall: Function Prologue
	Slide 17: Recall: Function Epilogue
	Slide 18: Return-to-libc: Into the system SF
	Slide 19: Return-to-libc: Into the system SF
	Slide 20: Return-to-libc: Fake SF
	Slide 21: Return-to-libc: Fake SF
	Slide 22: Return-to-libc: Steps
	Slide 23: Address of system
	Slide 24: Address of “/bin/sh”
	Slide 25: Return-to-libc: Our Stack
	Slide 26: Return-to-libc: Our Stack
	Slide 27: Return-to-libc: Our Stack
	Slide 28: Return-to-libc: Injecting NULL Bytes
	Slide 29: Return-to-libc: Injecting NULL Bytes
	Slide 30: Return-to-libc: Injecting NULL Bytes
	Slide 31: Return-to-libc: Recap
	Slide 32: Return-to-libc: Limitations
	Slide 33: Questions?

