Cybersecurity Lab 11 Lab 12
Firewalls

The goal of the lab is to:
(@) Implement simple packet filters in a Linux kernel module
(b) Realize stateless and stateful firewall rules in a simple IP network

1. Environment

Setup. You need to use two setups to perform this lab. In Task 1, you need to provision two VMs: firewall
and user machines. The firewall VM will run your Linux kernel module, and the user machine will send
some traffic. In Task 2 and Task 3, you will use IPMininet to emulate a simple network.

2. Tasks

Task 1: Implementing a Firewall using Netfilter (30%)
The goal of this task is to install two packet filtering rules by implementing netfilter hooks in a loadable
kernel module (LKM).

Setup

In this task, you need to work with two VMs existing on the same LAN. One of the VMs is the “firewall
VM?”, which runs your kernel module. The other VM is used to send traffic to the firewall VM. Developing
kernel modules could potentially crash your system. As a precaution, make sure that the firewall VM has
no important data, and/or that you already have a backup for its data. In addition, if the firewall VM
crashes, you may need to spawn a new one, so keep a copy of your code outside this VM.

Working with the Startup Code

The provided startup code implements a packet filter to block outgoing telnet traffic. Inspect the code and
make sure you understand how it works. You can use the provided Makefile targets to build, clean, install
and remove the module:

$ sudo -E make # build the module

$ sudo -E make insert_km # install the module
$ sudo -E make remove_km # remove the module

You can check whether the module is installed by:

$ sudo 1lsmod | grep labfirewall

Note: The provided code last tested on Linux Kernel 6.11.0-21-generic

Testing the Startup Code
Before installing the module, make sure that you can start a telnet session from the firewall VM to the
other VM (and show that in your report). Then, install the provided module and start a telnet session from

Lab 11 -- Firewalls

the firewall VM to the other VM. Discuss your observations using proper screenshots from telnet client
and tcpdump/Wireshark.

Implementing Other Packet Filters

Using the same code, add two hooks to block (1) the firewall VM from pinging 8.8.8.8, and (2) other
machines from pinging the firewall VM. You need to show and discuss your observations after and before
installing the filters, and show proper screenshots from ping and tcpdump/Wireshark.

Notes

(1) You can use existing Linux functions to parse packets. For example, to parse IP packets, you can
write the following:

struct iphdr *iph;

iph = ip_hdr(skb);

If the packet does not contain an IP header, the iph variable will be NULL. Similarly, the Linux
kernel provides functions to parse other headers.

(2) You can convert an IP address to a 32-bit integer for comparison:

struct iphdr *iph;
char match_ip[1l6] = "Z.Z.Z.Z"; // an IP address to match on
u32 ip_addr; // to hold the converted IP address

iph = ip_hdr(skb);

// Convert

in4_pton(match_ip, -1, (u8 *)&ip addr, "'\@', NULL);
// Use ip_addr

if(iph->saddr == ip_addr) ...

(3) You may need to check the IP, TCP, and ICMP header files in the Linux kernel to know their
definitions. For instance, the include/uapi/linux/icmp.h file contains the definitions for icmphdr
structure. You can view this file online from the Linux repo:
https://github.com/torvalds/linux/blob/master/include/uapi/linux/icmp.h

(4) Finally, you can find more documentation about Linux socket buffer (sk_buff) and netfilter here:
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html#the-struct-sk-buff-
structure

Task 2: Implementing Stateless Firewall (40%0o)

In Task 2 and Task 3, you will use IPMininet to create a simple network and implement firewall rules
using iptables in one of the routers. IPMininet is a python library that enables creating fully functional
Linux IP networks inside a single machine and is fully configurable using its API. You should get familiar

https://github.com/torvalds/linux/blob/master/include/uapi/linux/icmp.h
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html#the-struct-sk-buff-structure
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html#the-struct-sk-buff-structure

Lab 11 -- Firewalls

with its documentation to complete this lab. It is recommended to use the provided virtual machine through
Vagrant.

You need to submit an individual python file, called network. py, that implements all requirements from
Task 2 and Task 3. In your report, you need to show and discuss your observations, and include proper
screenshots from mininet command prompt and tcpdump/Wireshark.

Setup
We provide a startup code to build the considered IP network (shown below). The network has two routers:
rl and r2 which run OSPF to calculate the routing tables. The network also has five hosts: h11-h14 and

h2, each of which runs two HTTP servers on ports 8000 and 23. The goal is to install iptables rules at rl1
to satisfy given requirements.

iptables
L
h2 ——1 12 Vo |
v,
‘\\. ./; Y
External Network
//"_""m\ /"‘“'-\\ //"""‘\\ //’:"_"-\\
./, \.. ’,// ‘\. / \\. / \\
I \ Vo Vo \
' h11 || h12 | h13 || h14 |
-.__\ /' \\\ /_r \\ /, -.\ y /
_ - // \\..__7_7 // ____ - ,/ __7_7 ,/
Internal Network

The IP network used in Task 2 and Task 3.

Implementation Note

We refer to the interfaces between rl and h11-h14 as “Internal Network™ to indicate that they belong to a
single protected network. Our implementation, however, does not reflect a single network as each interface
between rl and h11-h14 belongs to a different subnet. A potential implementation is to deploy a switch
“s1” to connect the four hosts as shown below. The main reason for not using the “switch” approach is
that a switch in IPMininet is simply a Linux bridge. This means that iptables may not be able to perform
filtering at the transport layer inside IPMininet switches (i.e., Linux bridges). Unlike an IPMininet switch,
a router in IPMininet is a shell process in a network namespace with its own network stack, devices,
interfaces and firewall rules. In addition, that process is configured to act as a real router by setting the IP
forwarding flag.

Thus, when we say, for example, that “h2 should not ping any host in the Internal Network”, you need to
install the required rules at rl to handle traffic on the five interfaces connected to r1.

https://ipmininet.readthedocs.io/
https://ipmininet.readthedocs.io/en/latest/install.html#virtual-machine
https://ipmininet.readthedocs.io/en/latest/install.html#virtual-machine

Lab 11 -- Firewalls

iptables
S T
(1I “
'.\ h2 i r2 rl o A

External Network —‘—h

T T T P
/ \ / X g “ y N
'

{ \\I // _‘1 // __“ Irff \I
| h11) f h12) f h13 /| h14 |
\\ . . N /N / \‘\ /

~—— _ ~— — -

Internal Network

A switch-based approach to build the given network. We do not use this topology in this lab.

Your task is to implement stateless firewall rules to satisfy the following requirements.

Subtask 1: Protecting the Internal Network
In the first subtask, your goal is to protect the hosts in the internal network as follows:
1. External hosts (e.g., h2) cannot ping internal hosts
2. External hosts can ping rl
3. Internal hosts can ping external hosts
4. Other packets between the internal and external networks are blocked
Notice that the hosts belonging to the internal network can ping (or access) each other.

Subtask 2: Protecting the Internal Services
In addition to the requirements in Subtask 1, you need to protect the internal HTTP services by applying
the following rules:
1. External hosts can only access the HTTP server on 10.11.0.2:23 (i.e., h11 on port 23), not the other
internal hosts
2. External hosts cannot access other internal servers
Internal hosts can access all the internal servers
4. Internal hosts cannot access external servers

w

Note: You should not use the conntrack module for Task 2.

Lab 11 -- Firewalls

Task 3: Implementing Stateful Firewalls (30%0)

As discussed in the lecture, stateless firewalls process packets independently, which may lead to undesired
behaviours such as dropping packets belonging to a valid connection.

Your task is to implement stateful rules (using conntrack) to allow internal hosts to access the external
service in h2 at port 8000.

3. Guidelines
You need to at least consider the following while writing iptables rules:

The tables and chains to be used by iptables

The rule order within each chain

The traffic direction (i.e., inbound or outbound). In iptables, you need to use the “-1i
<intf_name>” or “-o0 <intf_name>” options to specify the incoming and outgoing
interfaces, respectively.

The protocol headers to match on. You can use the protocol-specific help message to print the
protocol match options. For example, running the command “sudo iptables -p icmp -h”
will show the available match options for ICMP.

In stateful firewalls, you need to think about the right connection state to match on: NEW,
ESTABLISHED and RELATED.

In addition, you may find these commands and tips useful:

You may need to run pingall command in the mininet command prompt 1-2 times after starting
the IPMininet topology. This ensures that the reachability information was calculated by OSPF.
You need to know the interfaces’ names from the mininet command prompt:

mininet> intfs ‘

You can interact with the iptables at rl1 using the mininet command prompt. As an example, you
can run:

mininet> rl iptables -L # list rules
mininet> rl1 iptables -F # flush rules

To ping h1l from h2, you can run the following:

mininet> h2 ping hl1l

You can use wget as a simple HTTP client as follows:

mininet> h2 wget -0 - 10.11.0.2:8000

Lab 11 -- Firewalls

- You can also capture the pcap files for each host/router using tcpdump. For example, to capture
the network packets on h1 host, you can run the following (Note that in Linux shell, the “&” at the
end of a command allows the command to run in the background. Try to run it without the “&”
and observe what happens):

mininet> hl tcpdump -w hl dump.pcap &
- Using connection tracking requires that the conntrack-tools be installed at your vagrant VM.

$ sudo apt-get install conntrack
$ # enable the modules

modprobe nf_conntrack

modprobe nf_conntrack_ipv4

modprobe nf_conntrack_ipvé6

check conntrack

sudo conntrack -L

sudo conntrack -S
$ # check conntrack at ri
mininet> rl conntrack -L

4. Installing Rules using IPMininet

IPMininet provides a simple API to install iptables rules to a specific router. This is achieved by using the
addDaemon function with IPTables configuration. For example, to install rules on r1:

rl_rules = [Rule(''), Rule('')]

rl.addDaemon(IPTables, rules=rl rules)

The first argument to the Rule constructor is the actual rule to be installed (without the iptables string).
For instance, to drop outgoing packets, you can write the following rule:

rl_rules = [Rule(')1

rl.addDaemon(IPTables, rules=rl _rules)

5. Submission

You are required to submit:

(1) All source code you implemented to complete the tasks.
(2) A detailed report.

The files should be compressed in a single (.zip) archive.

	1. Environment
	2. Tasks
	Task 1: Implementing a Firewall using Netfilter (30%)
	Setup
	Working with the Startup Code
	Testing the Startup Code
	Implementing Other Packet Filters
	Notes

	Task 2: Implementing Stateless Firewall (40%)
	Setup
	Implementation Note
	Subtask 1: Protecting the Internal Network
	Subtask 2: Protecting the Internal Services

	Task 3: Implementing Stateful Firewalls (30%)

	3. Guidelines
	4. Installing Rules using IPMininet
	5. Submission

