
Cybersecurity Lab II

Course Project



Final Project: Objectives

• Learning new concepts

• Gaining hand-on experience

• Making an impact 

2



Final Project
• This is your opportunity to explore or dig deeper in a specific security-

related topic.

• Related to systems and networking topics

• Has to have an implementation component

• Highly recommended to discuss with me and/or in the discussion 
board

3



Checkpoints – Hard deadlines
• Proposal:

• Team formation
• Initial project idea
• Unsuitable project ideas may require resubmission in one week

• First report: 
• First project progress report
• Focused on helping you with feedback on project direction

4



Checkpoints – Hard deadlines
• Second report:

• Second progress report
• Each group will send their progress and initial results

• Presentation: 
• Project demo/presentation session
• Use the feedback to finalize your project

• Final report:
• Project code and report

5



Project Proposal (2—4 pages)
• Group members and Project title
• Problem definition

• Objective
• Scope
• Importance
• Challenges

• Initial idea/solution (or at least the approach)
• Precisely describe the outcome (or software artifacts).

• How you’re going to implement your solution
• Tech. stack: potential libraries and software to be used
• Detailed evaluation plan (e.g., setup, datasets, VMs, etc.)
• High-level plan (timeline, task breakdown, task assignment)

6



Progress report structure
• Introduction: explain project direction, motivation and challenges

• Related work: what is the current state of the art on this problem? 
What will you compare your work with? 

• Proposed solution
• Overview
• Details
• Analysis
• Limitations

• Current progress on solution

7



Final Report Structure
• Similar to progress report structure, but should also have:
• Abstract
• Evaluation of proposed solution

• Define metrics
• Present results that cover possible counter-arguments

• Conclusion
• Future work/learned lessons

8



Project Ideas – Examples 

• Reproducing (complex) Attacks and Defenses

• Reproducing research papers (related to security)

• Implementing security-related tools

• New research ideas
• New attack/defense
• New architecture or component

9



Grading
• Two progress reports: 5% each

• Progress reports are loosely graded; main point is to get you feedback

• Presentation: 30%
• Graded on quality, delivery, communication
• Quality of work at this stage does matter as it is shown in the demo

• Final report: 20%
• Code deliverable: 40%, of which:

• Implementation: 25%. Produce working code that is well organized and 
documented, and easily reproducible

• Novelty: 15%. Produce an interesting result that surpasses prior work. 

10



Open Source Code: Guidelines
• If your project idea is implemented somewhere else:

• You cannot use that code; you need to implement it by yourself

• What type of libraries can I use?
• A library that doesn’t directly implement your main/code idea
• Helper utilities

• If in doubt, ask me.

11



Examples
• Not suitable:

• Reproducing a paper, but you are using its source code
• Creating a security tool, but you are using the source code 

of a tool that achieves the same purpose
• Suitable:

• Using a known library to create your tool with new 
features

12



Reproducing Attacks and Defenses

• DNS Rebinding Attacks

• SDN-related Attacks

• The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links 
• Attacking the Brain: Races in the SDN Control Plane

• Bypassing Virtualization/Sandboxing

• Side-channel Attacks

13



Reproducing research papers
• Examples:

• BlindBox: Deep Packet Inspection over Encrypted Traffic
• Embark: Securely outsourcing middleboxes to the cloud
• The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links
• Attacking the Brain: Races in the SDN Control Plane
• …

14



Implement/improve security-related tools 
• One metric if you’re improving an existing tool: 

• your code is merged to a popular open source tool

• Security-related dev tools:
• Static and dynamic code analysis: Discover bugs and vulnerabilities
• Compiler instrumentation 

• Attack-based/enumeration tools:
• nmap
• ROPGadget

15



Implement/improve security-related tools 
• Defense-based tools:

• IDS, IPS, Firewall

• End user tools:
• Tor (privacy)
• VPN (and Wireguard)

• Security-related protocols

16



Project Ideas [A sample from Spring’20—’21]
• ROP gadget finder
• Virtual Private Networks
• DNS rebinding attacks
• Detecting and repairing control flow hijacking attacks
• Analyzing software source code for vulnerability detection
• Reproducing sandbox escape vulnerability
• eBPF-based intrusion detection engine

17



Other ideas
• New attack/defense 
• Security issues in serverless/container platforms
• Are vNICs secure?
• Detecting malicious IoT behavior (large-scale, distributed env.)
• Attacks based on traffic analysis, e.g., Website fingerprinting
• Detecting caching policies in web/video servers

• Find the worst-case scenario  launch DoS attack
• Recall the PHP hash collision attack!

• Security of self-driving vehicles 
• Example

18


