
Cryptography and quantum 
computing



Cryptography

• Cryptography relies on the assumption of consistently hard 
problems

• NP-completeness is not suitable for cryptography
• Average complexity is not good enough for cryptography
• We cannot prove that these problems are hard

• Hard problems can give rise to trapdoor functions
• Given x, finding f(x) is easy
• Given f(x), finding x is hard
• Given f(x) and a secret k, finding x is easy

2



Hard problem #1: Integer factorization

• Given , find and (large primes)
• Not believed to be NP-hard
• Best algorithm: Number sieves

• Exponential time, but much faster than brute force
• Very large primes are needed to maintain security

• Used to create RSA

3



Hard problem #1: Integer factorization -> RSA

• Public parameters: (but not and )
• Alice generates and such that

• is the public key. Encryption of message m:

• Decryption of ciphertext :

• This works because of Euler’s theorem:

𝑒𝑑 ≡ 1 (𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1))

𝐸𝑛𝑐 𝑚 = 𝑚௘ 𝑚𝑜𝑑 𝑛

𝐷𝑒𝑐 𝑥 = 𝑥ௗ 𝑚𝑜𝑑 𝑛

𝑚௘ௗ ≡ 𝑚 (𝑚𝑜𝑑 𝑛)

If it was easy to find p and q, 
it would be easy to find d 
given e!

Trapdoor: only easy if given d

4



Hard problem #2: Discrete logarithm

• Given ௫ , and , find 
• Computing logarithm is easy normally
• However, it is (assumed) hard in modulo space
• Similarly, not believed to be NP-hard
• Used to create Diffie-Hellman Key Exchange and ElGamal

Encryption

5



Hard problem #2: Discrete logarithm -> DH

• Diffie-Hellman key exchange:
• Public parameter prime , generator 

• Generator means that ଶ ௣ିଵ are all 
different numbers

• Alice chooses random integer , sends ஺

• Bob chooses random integer , sends ஻

• Now both of them can compute a shared secret ஺஻

• No one else can compute it
If it was easy to find A given 
𝑔஺ mod 𝑝 , an attacker could 
compute the shared secret too

6



Hard problem #3: Elliptic Curves

• We can define new “addition” operations on elliptic curves:

• “Addition” is now:
• Draw a line from A to B
• Reflect it along the curve
• The result is C = A+B
• What is A + A?
• What is nA? Nick Sullivan, CloudFlare blog

7



Hard problem #3: Elliptic Curves

• Everything is done on finite fields instead of real numbers
• Easy example of finite fields: integer modulo p
• Maths on board

• Hard problem (Elliptic Curve Discrete Logarithm): Given A and B, 
find nA = B

• Brute force = keep adding A until it becomes B
• Baby step giant step algorithms: For , there must exist ଵ and ଶ

such that
ଵ ଶ

• We can compute and store all values of ଵ and then test all possible 
values for ଶ to get computation time

8



Hard problem #3: Elliptic Curves -> ECDH

• We can rebuild the Diffie-Hellman key exchange using ECC
• Public parameters: elliptic curve, point P on curve
• Alice chooses , sends 
• Bob chooses , sends 
• Shared secret is 

9



Quantum computers

• None of these problems are hard under quantum cryptography
• Is this a coincidence…?

• Euclid’s algorithm: given a and b, it is easy to find gcd(a, b)
• A trick for integer factorization of :

• Start with a guess a; determine if it is coprime with (Euclid’s algorithm)
• If it is coprime, then there exists where:

• Furthermore if r is even (else restart the algorithm), we have

• Use Euclid’s algorithm to compute 
ೝ

మ ; if it is N, restart

𝑎௥ ≡ 1 𝑚𝑜𝑑 𝑁

𝑁 | (𝑎
ೝ

మ −1) (𝑎
ೝ

మ +1)

10



Quantum computers

• Let’s start with some quantum computing basics
• A qubit is a superposition of states 0 and 1, and can 

be represented as a point on Bloch’s sphere:
௜ఝ

• Two qubits can be entangled, e.g.:

• If we measure the second qubit, it will collapse the 
first qubit into the same value!

11



Incredible properties of quantum computers

• There is a Hadamard gate that can transform a string of zeroes into the 
superposition of all possibilities:

௤

௔ୀ଴

• Quantum computers can implement all classical functions, so we can
use a second set of qubits to superimpose all possible solutions:

௤

௔ୀ଴

• Measuring will still only give us one solution, but we can take advantage 
of this

12



Shor’s algorithm

• Shor’s algorithm can quickly find the smallest r where ௥

• We put all possible values of r in the first set of registers, and
apply ௫ to the second set of registers

• Now when we measure the second register and obtain f(s), it will 
collapse the first registers into a superposition of

• We can then use a well known algorithm called quantum phase
estimation to obtain r!

13



Shor’s algorithm

• Shor’s algorithm takes trivial time and requires 2n+3 logical qubits 
(where n is the number of bits in the key)

• But Gidney and Eker (2021) estimate it needs about 20 million noisy 
“physical qubits”

• A slight alteration allows it to also break the discrete log problem 
as well as the elliptic curve problem

• Basically all of public key cryptography would break!

14



Post-quantum cryptography

• There are other hard problems which have no 
quantum solution at all

• This is no guarantee for the future, though experts
would be surprised to see a quantum solution

• Shortest vector problem: Given an n-
dimensional lattice, find the shortest vector in 
that lattice

• This hard problem can be used to build another 
trapdoor, creating cryptography based on 
Learning With Errors (not related to AI)

15


