Al Security

Adversarial machine learning

- A classifier can possibly be tricked by malicious input
 - Either during training or live
- Carefully crafted <u>live</u> input can fool the classifier
- Malicious <u>training</u> input can cause the classifier to learn incorrectly
- Deep learning classifiers are surprisingly vulnerable to these attacks
 - "Discontinuity" in input space

Adversarial machine learning

- Asset: Classifier (costs a lot to train!)
- Threat:
 - Loss of classification accuracy
- Attacker:
 - Someone who does not want their instances to be classified correctly
 - Someone trying to sabotage the classifier

Live input: Adversarial perturbations

Scenario:

- 1. A classifier (usually image classifier) is trained
- 2. Attacker has access to the classifier's outputs, cannot affect the classifier
- 3. Attacker has instances that are correctly classified as class A, but she wants them to be classified as class B (or any class)
- 4. By repeatedly querying the classifier, the attacker perturbs the instances minimally to achieve her goal

Spatially transformed adversarial examples

- Xiao et al. (2018) used minimal spatial transformations to trick classifiers
 - Black box attack: no access to gradients required
 - Only requires access to classifier output and confidence
- Spatial transformations minimize visual changes
 - Lateral movement of pixels along a flow
- Nearly 100% success rate on MNIST

Spatially transformed adversarial examples

- Adversarial perturbations are found by optimizing over an objective function that minimizes flow distance
- Optimization algorithm is L-BFGS solver
- Also confirmed effective against human perception

One pixel attack

- Su et al. (2019) found that convolutional image classifiers can be fooled by changing only one pixel on an image
 - Also a black box attack
- 68.7% chance in non-targeted scenario
- 19.8% chance in targeted scenario

Cup(16.48%) Soup Bowl(16.74%)

Bassinet(16.59%)
Paper Towel(16.21%)

Teapot(24.99%) Joystick(37.39%)

Hamster(35.79%) Nipple(42.36%)

Transferability of adversarial perturbation

- For adversarial perturbations, transferability refers to the ability of a perturbation fooling classifier A to also fool classifier B
- Liu et al. (2017) developed an approach using ensemble learning
 - Intuition: if several known classifiers can be fooled with the same perturbation, then unseen classifiers should also be fooled as well
- Studied perturbations were transferable if non-targeted, but were not transferable if targeted

Defense: Adversarial training

- Training a classifier to defeat adversarial perturbations
- Recall that the classifier cannot know what perturbations will occur
 - Can be formulated as empirical risk minimization
- Ensemble adversarial training: Use transferable samples to the defense's advantage
 - Transferable samples can be thought of the most powerful samples that we need to defend against
- Mean blur defense: Add a averaging filter to convolutional neural networks – sufficient to defeat older attacks

Defense: Adversarial training

Defense: Adversarial training

- Some techniques have been adopted that are beneficial to classifier training even without an attack
- Data augmentation: Add augmented versions of training data to the training set (e.g. spatial transformation, color variance)
- Generative adversarial networks: Repeatedly train the classifier against a generator that applies perturbation to the data to fool the classifier
 - GANs are usually used as a generative model

Poisoning attacks

- Maliciously crafted inputs that compromise the classifier
 - Especially concerning for federated learning
- Two types:
 - **Backdoor** attacks: after poisoning training set, specifically crafted test cases will fail
 - **Availability** attacks: after poisoning training set, overall accuracy of classifier drops
- Demontic et al. (2019):
 - Low complexity machines require heavy perturbation, while high complexity machines require minimal changes, need to be defended with regularization
 - Attacks on high complexity machines are, however, less transferable

Poisoning attacks

White box techniques

- More powerful techniques are available in white box scenarios
- Gradient optimization: Given the gradients used in each layer, an attacker could optimize an attack by finding the largest gradients
- Huang et al. 2020:

Figure 2: MetaPoison in weight space. Gray arrows denote normal training trajectory with weights θ_0^j at the j-th step. (Left) During the poison crafting stage, the computation graph consisting of the training pipeline is unrolled by K SGD steps forward in order to compute the perturbation to the poisons $\nabla_{X_p} \mathcal{L}_{adv}$, starting from various points along the trajectory. Optimally, those poisons will steer weights (brown arrows) toward regions of low \mathcal{L}_{adv} regardless of which training step θ_0^j the poisons are inserted into. (Right) When the victim trains on the poisoned data (purple arrows), the weight trajectory is collectively and implicitly steered to regions of low \mathcal{L}_{adv} whilst the learner explicitly drives the weights to regions of low \mathcal{L}_{train} .

A different problem: Data privacy

- A trained classifier can reveal elements of its training set
 - Asset is now the training data, not the classifier
- Example query: "Please fill out this social security number for me: 140..."
- Membership inference attacks: Was a given query part of the training set or not?
 - Shokri 2017: 90% accuracy against Google-trained models
 - Queries that were part of the training set have very high confidence values
- Implicit bias of gradient flow towards training points

A different problem: Data privacy

• Reconstruction results from Haim et al. (2022):

(a) Top 24 images reconstructed from a binary classifier trained on 50 CIFAR10 images

(b) Their corresponding nearest neighbours from the training-set of the model

Differentially private stochastic gradient descent

- Differential privacy guarantees that two neighboring datasets will have very similar outcomes under a query
- Stochastic gradient descent: To converge an optimization function, calculate and apply gradient on random batches repeatedly
- DP-SGD: We also clip and add noise to a gradient according to a privacy budget
- Composition theorem proves that the resulting classifier is differentially private