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Adversarial machine learning

• A classifier can possibly be tricked by malicious input
• Either during training or live

• Carefully crafted live input can fool the classifier
• Malicious training input can cause the classifier to learn 

incorrectly
• Deep learning classifiers are surprisingly vulnerable to these 

attacks
• “Discontinuity” in input space



Adversarial machine learning

• Asset: Classifier (costs a lot to train!)
• Threat: 

• Loss of classification accuracy

• Attacker:
• Someone who does not want their instances to be classified correctly 
• Someone trying to sabotage the classifier



Live input: Adversarial perturbations

Scenario:
1. A classifier (usually image classifier) is trained
2. Attacker has access to the classifier’s outputs, cannot affect the 

classifier
3. Attacker has instances that are correctly classified as class A, 

but she wants them to be classified as class B (or any class)
4. By repeatedly querying the classifier, the attacker perturbs the 

instances minimally to achieve her goal



Spatially transformed adversarial examples

• Xiao et al. (2018) used minimal spatial 
transformations to trick classifiers

• Black box attack: no access to gradients 
required

• Only requires access to classifier output 
and confidence

• Spatial transformations minimize 
visual changes

• Lateral movement of pixels along a flow

• Nearly 100% success rate on MNIST



Spatially transformed adversarial examples

• Adversarial perturbations are found by optimizing over an objective 
function that minimizes flow distance

• Optimization algorithm is L-BFGS solver
• Also confirmed effective against human perception



One pixel attack

• Su et al. (2019) found that 
convolutional image classifiers can be 
fooled by changing only one pixel on 
an image

• Also a black box attack

• 68.7% chance in non-targeted 
scenario

• 19.8% chance in targeted scenario



Transferability of adversarial perturbation

• For adversarial perturbations, transferability refers to the ability of 
a perturbation fooling classifier A to also fool classifier B

• Liu et al. (2017) developed an approach using ensemble learning
• Intuition: if several known classifiers can be fooled with the same 

perturbation, then unseen classifiers should also be fooled as well

• Studied perturbations were transferable if non-targeted, but were 
not transferable if targeted



Defense: Adversarial training
• Training a classifier to defeat adversarial perturbations
• Recall that the classifier cannot know what perturbations will 

occur
• Can be formulated as empirical risk minimization

• Ensemble adversarial training: Use transferable samples to the 
defense’s advantage

• Transferable samples can be thought of the most powerful samples that 
we need to defend against

• Mean blur defense: Add a averaging filter to convolutional neural 
networks – sufficient to defeat older attacks



Defense: Adversarial training



Defense: Adversarial training
• Some techniques have been adopted that are beneficial to 

classifier training even without an attack
• Data augmentation: Add augmented versions of training data to 

the training set (e.g. spatial transformation, color variance) 
• Generative adversarial networks: Repeatedly train the classifier 

against a generator that applies perturbation to the data to fool 
the classifier

• GANs are usually used as a generative model



Poisoning attacks

• Maliciously crafted inputs that compromise the classifier
• Especially concerning for federated learning

• Two types:
• Backdoor attacks: after poisoning training set, specifically crafted test 

cases will fail
• Availability attacks: after poisoning training set, overall accuracy of

classifier drops
• Demontic et al. (2019):

• Low complexity machines require heavy perturbation, while high 
complexity machines require minimal changes, need to be defended with 
regularization

• Attacks on high complexity machines are, however, less transferable



Poisoning attacks



White box techniques

• More powerful techniques are available in white box scenarios
• Gradient optimization: Given the gradients used in each layer, an 

attacker could optimize an attack by finding the largest gradients
• Huang et al. 2020:



A different problem: Data privacy

• A trained classifier can reveal elements of its training set
• Asset is now the training data, not the classifier

• Example query: “Please fill out this social security number for me: 
140…”

• Membership inference attacks: Was a given query part of the 
training set or not?

• Shokri 2017: 90% accuracy against Google-trained models
• Queries that were part of the training set have very high confidence values

• Implicit bias of gradient flow towards training points



A different problem: Data privacy

• Reconstruction results from Haim et al. (2022):



Differentially private stochastic gradient descent

• Differential privacy guarantees that two neighboring datasets will 
have very similar outcomes under a query

• Stochastic gradient descent: To converge an optimization
function, calculate and apply gradient on random batches
repeatedly

• DP-SGD: We also clip and add noise to a gradient according to a 
privacy budget

• Composition theorem proves that the resulting classifier is 
differentially private


