Al Security



Adversarial machine learning

* A classifier can possibly be tricked by malicious input
* Either during training or live

e Carefully crafted live input can fool the classifier

* Malicious training input can cause the classifier to learn
incorrectly

* Deep learning classifiers are surprisingly vulnerable to these
attacks

e “Discontinuity” in input space



Adversarial machine learning

* Asset: Classifier (costs a lot to train!)

* Threat:
* Loss of classification accuracy

e Attacker:

* Someone who does not want their instances to be classified correctly
* Someone trying to sabotage the classifier



Live input: Adversarial perturbations

Scenario:
1. Aclassifier (usually image classifier) is trained

2. Attacker has access to the classifier’s outputs, cannot affect the
classifier

3. Attacker has instances that are correctly classified as class A,
but she wants them to be classified as class B (or any class)

4. By repeatedly querying the classifier, the attacker perturbs the
instances minimally to achieve her goal



Spatially transformed adversarial examples

* Xiao et al. (2018) used minimal spatial Tarpetcfase
transformations to trick classifiers

* Black box attack: no access to gradients
required

* Only requires access to classifier output
and confidence

e Spatial transformations minimize
visual changes

* Lateral movement of pixels along a flow
* Nearly 100% success rate on MNIST




Spatially transformed adversarial examples

* Adversarial perturbations are found by optimizing over an objective
function that minimizes flow distance

* Optimization algorithm is L-BFGS solver
* Also confirmed effective against human perception




One pixel attack

* Su et al. (2019) found that |
convolutional image classifiers can be L
fooled by changing only one pixel on | -
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* Also a black box attack g \

* 68.7% chance in non-targeted
scenario

* 19.8% chance in targeted scenario
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Transferability of adversarial perturbation

* For adversarial perturbations, transferability refers to the ability of
a perturbation fooling classifier A to also fool classifier B

* Liuetal. (2017) developed an approach using ensemble learning
* [ntuition: if several known classifiers can be fooled with the same
perturbation, then unseen classifiers should also be fooled as well

* Studied perturbations were transferable if non-targeted, but were
not transferable if targeted



Defense: Adversarial training

* Training a classifier to defeat adversarial perturbations

* Recall that the classifier cannot know what perturbations will

OoCccCur
* Can be formulated as empirical risk minimization

* Ensemble adversarial training: Use transferable samples to the

defense’s advantage

* Transferable samples can be thought of the most powerful samples that
we need to defend against

* Mean blur defense: Add a averaging filter to convolutional neural
networks — sufficient to defeat older attacks



Defense: Adversarial training




Defense: Adversarial training

* Some techniques have been adopted that are beneficial to
classifier training even without an attack

* Data augmentation: Add augmented versions of training data to
the training set (e.g. spatial transformation, color variance)

* Generative adversarial networks: Repeatedly train the classifier
against a generator that applies perturbation to the data to fool
the classifier

* GANs are usually used as a generative model



Poisoning attacks

* Maliciously crafted inputs that compromise the classifier
* Especially concerning for federated learning

* Two types:
* Backdoor attacks: after poisoning training set, specifically crafted test
cases will fail
* Availability attacks: after poisoning training set, overall accuracy of
classifier drops

* Demontic et al. (2019):

* Low complexity machines require heavy perturbation, while high
complexity machines require minimal changes, need to be defended with

regularization
* Attacks on high complexity machines are, however, less transferable



Poisoning attacks
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White box techniques

* More powerful techniques are available in white box scenarios

* Gradient optimization: Given the gradients used in each layer, an
attacker could optimize an attack by finding the largest gradients

* Huang et al. 2020:
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Figure 2: MetaPoison in weight space. Gray arrows denote normal training trajectory with weights &) at the
j-th step. (Left) During the poison crafting stage, the computation graph consisting of the training pipeline is
unrolled by K SGD steps forward in order to compute the perturbation to the poisons V Xy Laav, starting from
various points along the trajectory. Optimally, those poisons will steer weights (brown arrows) toward regions of
low Laay regardless of which training step 8 the poisons are inserted into. (Right) When the victim trains on the
poisoned data (purple arrows), the weight trajectory is collectively and implicitly steered to regions of low L4y
whilst the learner explicitly drives the weights to regions of low Liain.



A different problem: Data privacy

* Atrained classifier can reveal elements of its training set
* Assetis now the training data, not the classifier

* Example query: “Please fill out this social security number for me:
140...”

* Membership inference attacks: Was a given query part of the
training set or not?

* Shokri 2017: 90% accuracy against Google-trained models
* Queries that were part of the training set have very high confidence values

* Implicit bias of gradient flow towards training points



A different problem: Data privacy

* Reconstruction results from Haim et al. (2022):
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Differentially private stochastic gradient descent

* Differential privacy guarantees that two neighboring datasets will
have very similar outcomes under a query

* Stochastic gradient descent: To converge an optimization
function, calculate and apply gradient on random batches
repeatedly

* DP-SGD: We also clip and add noise to a gradient according to a
privacy budget

* Composition theorem proves that the resulting classifier is
differentially private



