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CMPT 733

Automated Machine Learning 

(AutoML)
Instructor Zhengjie Miao

Course website https://coursys.sfu.ca/2025sp-cmpt-733-g1/pages/

Based on the slides by Lydia Zheng and Jiannan Wang
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https://didyouknowbg8.wordpress.com/2024/02/24/yolov9-a-leap-forward-in-object-detection-performance/

https://en.wikipedia.org/wiki/Amazon_Alexa

DL Applications
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Motivation
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• Machine learning is very successful

• To build a traditional ML pipeline:
❑ Domain experts with longstanding experience

❑ Specialized data preprocessing

❑ Domain-driven meaningful feature engineering

❑ Picking right models

❑ Hyper-parameter tuning



ML Workflow
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Training set Validation set

Train ML 

model

Evaluate ML 

model

User adapts 

ML pipeline

User observes 

performance

 Users indirectly teach machines how to learn.



Classic ML and AutoML
Current ML/DL practice

Expert chooses 

architecture & 

hyperparameters

ML/DL “end-to-

end”

AutoML:true end-to-end learning

End-to-end learning

Meta-level

learning & 

optimization

Learning

box
Hutter &Vanschoren:AutoML, 
Neurips’18 tutorial
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Recap: Trend in 2023
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Trend in 2024
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https://www.anaconda.com/resources/report/state-of-data-science-report-2024



AutoML Vision

• For No n -Experts

• AutoML allows non-experts to make use of machine learning models 

and techniques without requiring to become an expert in this field first
• https://en.wikipedia.org/wiki/Automated_machine_learning

• For Dat a Scientists

• AutoML aims to augment, rather than automate, the work and work 

practices of heterogeneous teams that work in data science.
• Wang, Dakuo, et al. "Human-AI Collaboration in Data Science: Exploring Data Scientists' 

Perceptions of Automated AI." Proceedings of the ACM on Human-Computer Interaction 

3.CSCW (2019): 1-24.
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What is AutoML?

❖ Automate the process of applying machine learning to rea l-
world problems
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Outline

• Auto Feature Selection (Lecture 5)

• Auto Hyperparameter Tuning (part in Lecture 5)

• Auto Feature Generation (This Lecture) Neural Architecture Search 
(This Lecture)
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Auto Feature Generation
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Motivation

❖ The model performance is heavily dependent on
quality of features in dataset

❖ It’s t ime -consuming for domain experts to 
generate enough useful features
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Feature Generation

❖ Unary operators (app l ied on a single fea ture)

◦ Discretize numerical features

◦ Apply rule-based expansions of dates

◦ Mathematical operators (e.g., Log Function)

❖ Higher-order operators (app l ied on 2+ features)

◦ Basic arithmetic operations (e.g., +, -,×, ÷)

◦ Group-by Aggregation (e.g., GroupByThenAvg, GroupByThenMax)

9
Katz, Gilad,Eui Chul Richard Shin,and Dawn Song. "Explorekit:Automatic feature generation and selection." 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE,2016.
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Featuretools

❖ An open source library for performing 
automated feature engineering

❖ Design to fast- forward feature generation 
across mult i-relational tables
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Concepts
❖ Entity is the relat ional tables

❖ An EntitySet is a collect ion of entit ies a nd the 

relat ionships between them

❖ Deep Feature Synthesis (DFS)

❖ Algorithm that creates features by aggregating and 

transforming data across linked tables

❖ Feature Pr imit ives

❖ Unary Operator: transformation (e.g., MONTH)

❖ High-order Operator: Group-by Aggregation (e.g.,

GroupByThenSUM)
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Product_id Customer_id Name Price

1 1 Banana $100

2 1 Banana $100

3 1 Orange $300

4 2 Apple $50

... ... ... ...

Customer Product

GroupBy 

ThenSUM:

Unary Operator: 

MONTH

Customer_id Birthdate MONTH(Birthdate) SUM(Product.Price)

1 1995-09-28 9 $500

2 1980-01-01 1 ...

3 1999-02-02 2 ...

... ... ... ...

Entity sets

Feature 

Primitives

Steven Bergner, Zhengjie Miao - CMPT 7332025-03-04 17



Steven Bergner, Zhengjie Miao - CMPT 7332025-03-04 18

Example
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• Documentation: docs.featuretools.com

• GitHub: github.com/alteryx/featuretools

• Key Takeaway: Let Featuretools generate numerous features 
automatically, so you can focus on modeling and analysis.
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Outline

• Auto Feature Selection (Lecture 5)

• Auto Hyperparameter Tuning (Part in Lecture 5)

• Auto Feature Generation (This Lecture) Neural Architecture Search 
(This Lecture)
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Auto Hyperparameter Tuning
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A Simple Example with k-NN
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kNN on jasmine

• k-nearest neighbors is one of the simplest ML algorithms

• Size of neighbourhood (k) is very important for its performance

• The performance function depending on k is quite complex (not at all convex)

Credit to: Marius Lindauer
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Recap: Parameter Tuning and Evaluation
Evaluation
◦ Ground-truth Label?

◦ Evaluation Metric?

Parameter Tuning
◦ Grid Search

◦ Random Search

◦ Bayesian

Optimization
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Recap: Grid Search & Random Search

Bergstra, James,and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of machine learning research 13.Feb (2012): 281-305.

x: # of working hours (1, 2,…,12)
y: # of sleeping hours (1, 2,…,12)

Income(x, y) = Work (x) + Sleep (y)

Grid Search Random Search

XX

Y Y
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Recap: Bayesian Optimization

❖ Intuition

➢ Want to find the peak point of objective

function (eg. accuracy as a function of 

parameters)

➢ Fit a statistical model to the observed points and

pick next best point where we believe the

maximum will be

➢ Next point is determined by an acquisition

function that trades off exploration(objective)

and exploitation(uncertainty)
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Hyperparameter Optimization (HPO)
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Hutter &Vanschoren:AutoML, 
Neurips’18 tutorial



Hyperparameter Gradient Descent
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Hutter &Vanschoren:AutoML, 
Neurips’18 tutorial

1. Formulation as bilevel optimization problem

2. Interleave optimization steps



Neural Architecture Search (NAS)
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Performance is very sensitive to many hyperparameters

Architectural hyperparameters

dog

cat

…

Units per layer

Kernel size

# convolutional layers # fully connected layers

2025-03-04 31

Challenge in Deep Learning

Optimization algorithm, learning rates, momentum, batch normalization, batch sizes, 

dropout rates, weight decay, data augmentation, …

Easily 20-50 design decisions
Hutter &Vanschoren:AutoML, 
Neurips’18 tutorial
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How can someone come out with such an architecture?

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016

Motivation
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Neural Architecture Search: Big Picture
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NAS is also Hyperparameter Optimization

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733 34

Key Challenges:

1.Vast Search Space

• The number of possible neural architectures is huge.

2.Computational Cost

• Training each candidate network is expensive (time, GPU resources).

3.Overfitting to Benchmark Datasets

• Risk of overly specialized solutions.



Search Space

❖ Define which neural 
architectures a NAS approach
migh t discover in principle

❖ May have human bias → 
prevent finding novel 
architectural building 
blocks

Chain-structured Mult i -branch
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Search Strategy

❖ Basic Idea
➢ Explore search space (often exponentially large or even 

unbounded)

❖ Methods
➢ Random Search
➢ Bayesian Optimization [Bergstra et al., 2013]
➢ Evolutionary Methods [Angel ine et al., 1994]
➢ Reinforcement Learning [Baker et al., 2017]
➢ ……
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Example: Differentiable Architecture Search 
(DARTS)
Continuous relaxation of the search space to enable gradient-based optimization.
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High level idea of DARTS

● Bi-level optimization

Phase 1: train the model Phase 2: update the 
architecture

Architecture Model
Training 

Data
Loss

Back-propagate

Architecture Model
Training 

Data

Model’
Validation 

Data
Loss

Back-propagate

Update the architecture such that the target model performs well on the val. set

GD-step
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Performance Estimation Strategy

❖ Basic Idea
➢ The process of est imat ing predictive performance

❖ Methods
➢ Simplest option: perform a training and validation of the

architecture on data

➢ Initialize weights of novel architecture based on weights of
other architectures have been trained before

➢ Using learning curve extrapolation [Swersky et al., 2014]

➢ …...
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1. Will AutoML software replace Data Scientists?

2. How to approach AutoML as a data scientist?
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https://www.youtube.com/watch?v=ZqCoFp3-rGc

H20 Driverless AI D e m o

https://www.youtube.com/watch?v=ZqCoFp3-rGc
https://towardsdatascience.com/will-automl-software-replace-data-scientists-ca3cacf688b7
https://towardsdatascience.com/how-to-approach-automl-as-a-data-scientist-a90321b0061
https://www.youtube.com/watch?v=ZqCoFp3-rGc


Trend in 2024
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https://www.anaconda.com/resources/report/state-of-data-science-report-2024



Trend in 2024
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Summary

What is AutoML and why we need it? How AutoML works?

◦ Auto Feature Selection (Lecture 5)

◦ Auto Hyperparameter Tuning (Lecture 5 and this Lecture)

◦ Auto Feature Generation (This Lecture)

◦ Neural Architecture Search (This Lecture)
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CMPT 733

Explainable Machine Learning

Instructor Zhengjie Miao

Course website https://coursys.sfu.ca/2025sp-cmpt-733-g1/pages/

Based on the slides by: Xiaoying Wang and Jiannan Wang

https://coursys.sfu.ca/2024sp-cmpt-733-g1/pages/


Outline

• Motivation: Why Explainable ML matters?

• Big Picture: Taxonomy 

• State-of-the-art Techniques
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A B

Bird:99.0%

Evaluation

3

Bird:99.9%

Which model are you going to choose?
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Which model are you going to choose?

A B

Bird:99.0% Bird:99.9%

Because it has 

wings and a 

beak

Because it is white 

and the background is

blue

Evaluation
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Q:How symmetrical are the white bricks on either side of the building? A:

very

Q:How asymmetrical are the white bricks on either side of the building? A:

very

Q:How fast are the bricks speaking on either side of the building? A:

very

Debugging

5

MUDRAKARTA, P.K., TALY, A., SUNDARARAJAN, M. AND DHAMDHERE,K., 2018. DID THE MODELUNDERSTAND THE QUESTION?.ARXIV PREPRINT ARXIV:1805.05492.
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Debugging
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MUDRAKARTA, P.K., TALY, A., SUNDARARAJAN, M. AND DHAMDHERE,K., 2018. DID THE MODELUNDERSTAND THE QUESTION?.ARXIV PREPRINT ARXIV:1805.05492.



Improvement

ANON.ICCV'19TUTORIAL ON INTERPRETABLEMACHINE LEARNING IN COMPUTERVISION
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Legal Concerns



Outline

Motivation:Why Explainable ML matters?

Big Picture:Taxonomy

State-of-the-art Techniques
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Taxonomy

Transparent 

Models

Post-hoc 

Explanation

Linear Regression,DecisionTree,KNN,Bayesian Network…

Global Model 

Explanation

Individual Prediction 

Explanation

Permutations, Partial Dependence Plots, 

Global Surrogate …

Attribution, Influential Instances, 

Local Surrogate …
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Taxonomy

Transparent 

Models

Post-hoc 

Explanation

Linear Regression,DecisionTree,KNN,Bayesian Network…

Global Model 

Explanation

11

Individual Prediction 

Explanation

Permutations, Partial Dependence plots, 

Global Surrogate …

Attribution, Influential Instances, 

Local Surrogate …
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Linear Regression

12

House rent (z) with respect to its area (x) 

and distance from SFU (y)

𝑧 = 2.1𝑥 − 2.4𝑦 + 1800

How do area and distance affect the house rent?
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Decision Tree

13

Hasa driver’s license?

Live far from school?

Hasa part-time job?Takecourses in the morning?

Yes N

o

Yes

N

o

Yes N

o

Yes No

Hasa car No car No carHasa car

No car

Doesa student own a car?

Why does the model predict 
studentAhas a car ?
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Taxonomy

Transparent 

Models

Post-hoc 

Explanation

Linear Regression,DecisionTree,KNN,Bayesian Network…

Global Model 

Explanation

Individual Prediction 

Explanation

Permutations, Partial Dependence Plots, 

Global Surrogate …

Attribution, Influential Instances, 

Local Surrogate …
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Permutations

ID Distance to 

SFU

# Bathroom Area Distance to 

Bus Stop

…

1 5.0 km 1 670 ft2 300 m

2 8.2 km 2 970 ft2 120 m

3 2.3 km 2 880 ft2 1200 m

… …

9999 10.0 km 1 680 ft2 50 m

10000 7.8 km 1 730 ft2 230 m

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733 15

Main idea:measure the importance of a feature by calculating the increase in the
model’s prediction error after permuting the feature



● Input: trained model and labeled dataset for evaluation

● Output: relative importance for each feature

● Method:

○ Apply the model on original dataset and get an estimation error E

○ For each feature:

■ Permute feature and apply the model again on the permuted data to get a

new estimation error E’

■ The feature importance can be measured by E’-E or E’/E

Permutations

162025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733



Main idea:show the marginal effect one or two features have on the
predicted outcome of a machine learning model

Partial Dependence Plots



ID Temperature Humidity Wind Speed Rental#

1 20 30 20 3000

2 25 35 10 2500

3 22 25 15 3300

4 30 20 18 2000

.. .. … … …
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Partial Dependence Plots

Let 𝑥𝑠 be the feature set 𝑥𝑠 ∈ 1,2  we want to examine, and 𝑥𝑐 be 

the rest of the features used in the model መ𝑓:

• Partial dependence function: መ𝑓𝑥𝑠
𝑥𝑐 = 𝐸𝑥𝑐

መ𝑓 𝑥𝑠, 𝑥𝑐 =
∫ መ𝑓 𝑥𝑠, 𝑥𝑐 𝑑𝑃 𝑥𝑐

• Can be estimated by: መ𝑓𝑥𝑠
𝑥𝑐 =

1

𝑛
∑ 𝑖=1

𝑛 𝑥𝑠, 𝑥𝑐
(𝑖)
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Global Surrogate

20

Main idea: train a transparent model to approximate the predictions 
of a black box model

Input data

Prediction

Train Interpret

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733



Ƹ𝑦(𝑖) and Ƹ𝑦∗
𝑖

 : the target model and surrogate model’s prediction for the 𝑖th 

input data

R-squared: measure how good the surrogate model is in approximating the 

target model

Global Surrogate

21

𝑅2 = 1 −
∑𝑖=1

𝑛 Ƹ𝑦∗
𝑖

− Ƹ𝑦
𝑖

2

∑𝑖=1
𝑛 Ƹ𝑦

𝑖
− Ƹ𝑦𝑎𝑣𝑔

2
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Taxonomy

Transparent 

Models

Post-hoc 

Explanation

Linear regression,Decision tree,KNN,Bayesian Network…

Global Model 

Explanation

Individual Prediction 

Explanation

Permutations,Partial dependence 

plots,Global surrogate …

Attribution, Influential instances, 

Local surrogate …
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Attribution

23

Prediction

Feature 1

Feature 2

Feature N
…

Attribute

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733

• Main idea:

• Attribute a model’s prediction on a sample to its input features

• Approaches

• Ablation

• Shapely value

• …



Ablation:drop each feature and attribute the change in prediction to the feature

A B

Bird (20%)

Attribution (Ablation)

24

Bird (98%)

Bird (35%)Bird (96%)

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733

Bird (99%)Bird (99%)



Attribution (Ablation)

● Saliency maps: compute the relative importance of each feature
○ if change/remove this feature, how much is the prediction affected?

 Sentiment

QA

MLM

[Wallace et al. 2020]

https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020/


Local Surrogate (LIME)

Main idea:Test what happens to the prediction when give variations of data 
into the machine learning model

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733 26

[Ribeiro et al. 2016]

https://arxiv.org/abs/1602.04938


LIME: Local Interpretable Model-Agnostic Explanations 
Explanations

x

p( y | x)
● Pick a model class interpretable by 

humans, e.g., linear regression

● Locally approximate global (blackbox) 

model

○ Simple model globally bad, 

but locally good

x1

x2

[Ribeiro et al. 2016]

proximity measureg approximates f
complexity measure

https://arxiv.org/abs/1602.04938


LIME Sentiment Analysis Example

The movie is mediocre, maybe even bad. Negative 99.8%

Negative 98.0%

Negative 98.7%

Positive 63.4%

Positive 74.5%

Negative 97.9%

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.

The movie is mediocre, maybe even bad.



● Classic result in game theory on distributing the total gain 

from a cooperative game

● Introduced by LloydShapley in 1953 ,who won the

Nobel Prize in Economics in 2012

● Popular tool in studying cost-sharing,market analytics, 

voting power, and most recently explaining ML models

Shapley Value

29

"AValuefor n-personGames".Contributionsto the Theoryof Games2.28(1953): 307-317
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● Shapely value:derive from game theory on distributing gain in a coalition game

● Coalition game:players collaborating to generate some gain, function 𝑣𝑎𝑙(𝑆) represents

the gain for any subset 𝑆 of players

○ Game:prediction task

○ Players: input features

○ Gain:marginalized actual prediction minus average prediction 𝑣𝑎𝑙x(𝑆) =

● Marginal contribution of a feature 𝑖 to a subset of other features:𝑣𝑎𝑙x 𝑆 ∪ 𝑥i

Attribution (Shapely Value)

30

− 𝑣𝑎𝑙x(𝑆)
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● Shapely value of a feature 𝑖 on sample 𝑥:weighted aggregation of its marginal contribution

over all possible combinations of subsets of other features

Attribution (Shapely Value)

31

● Intuition:The feature values enter a room in random order.All feature values in the room 

participate in the game (= contribute to the prediction).The Shapley value of a feature

value is the average change in the prediction that the coalition already in the room

receives when the feature value joins them.

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733



● A company with two employeesAlice and Bob
○ No employees,0 profit

○ Alice alone makes 20 units of profit

○ Bob alone makes 10 units of profit

○ Alice and Bob make total 50 units of of profit

● What should be the bonuses be?

Example

32

All Possible Orders Marginal forAlice Marginal for Bob

Alice,Bob 20 30

Bob,Alice 40 10

ShapleyValue 30 20
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● A company with two employeesAlice and Bob
○ No employees,0 profit

○ Alice alone makes 20 units of profit

○ Bob alone makes 10 units of profit

○ Alice and Bob make total 50 units of of profit

● What should be the bonuses be?

Example

33

All Possible Orders Marginal forAlice Marginal for Bob

Alice,Bob 20 30

Bob,Alice 40 10

ShapleyValue 30 20
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Attribution (Shapely Value)

332025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733

• Two challenges when computing shapely value:
• Exponential time since the permutation

• Cannot inference on models when some features are not provided

• SHAP (SHapley Additive exPlanations) provide solutions for these 

two challenges:
• KernelSHAP: an approximation solution for all models:

• Sample a subset of feature orders

• Filling missing features with background dataset provided by user

LUNDBERG, SCOTT M., AND SU-IN LEE. “A UNIFIED APPROACH TO INTERPRETING MODEL 
PREDICTIONS.” ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS. 2017.



SHAP Example

XGBoost on Adult dataset, classic feature attribution

https://github.com/shap/shap/blob/master/notebooks/tabular_examples/tree_based_models/
Census%20income%20classification%20with%20XGBoost.ipynb



Bar chart of mean importance SHAP Summary Plot



Influential Instances

Main idea:debug machine learning model by identifying influential training instances (a
training instance is influential when its deletion from training data considerably 
changes the model’s prediction)

KOH, PANG WEI, AND PERCYLIANG."UNDERSTANDINGBLACK-BOX PREDICTIONS VIA INFLUENCEFUNCTIONS." ICML’17

Target sample 

from test set

The most influential training

sample for each model

A

B
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Influential Instances
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• Naïve approach: deletion diagnostics

○ Train a model on all data instances, predict on test data and choose a 

target sample, for example: an incorrectly predicted sample with high 

confidence

○ For each training data, remove the data and retrain a model, predict on 

target sample and calculate the differences between the prediction and 

original prediction

○ Get the most influential top K instances (very likely to be mislabeled in this 

scenario)

○ Train a transparent model to find out what distinguishes the influential 

instances from the non- influential instances by analyzing their features 

(optional, for better understand the model)

2025-03-04 Steven Bergner, Zhengjie Miao - CMPT 733



Evaluation
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● Human review: which method that human can get more insight of the model?

● Fidelity: how well does the method approximate the black box model?

● Stability: how much does an explanation differ for similar instances?

● Complexity: computational complexity of the method

● Coverage: the types of models that the method can explain

● …
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Available Tools
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● LIME https://github.com/ankurtaly/Integrated-Gradients

● SHAP implementation in Python https://github.com/slundberg/shap

● https://shap.readthedocs.io/en/latest/tabular_examples.html 

● Captum: PyTorch model interpretability tool https://github.com/pytorch/captum

● ELI5: a library for debugging/inspecting machine learning classifiers and explaining

their prediction https://eli5.readthedocs.io/en/latest/

● Influence function implementation in Python

https://github.com/kohpangwei/influence-release
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Summary

Transparent 

Models

Post-hoc 

Explanation

Linear Regression,DecisionTree,KNN,Bayesian Network…

Global Model 

Explanation

Individual Prediction 

Explanation

Permutations, Partial Dependence Plots, 

Global Surrogate …

Attribution, Influential Instances, 

Local Surrogate …
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