CMPT 733 Automated Machine Learning (AutoML) Instructor Zhengjie Miao Course website https://coursys.sfu.ca/2025sp-cmpt-733-gl/pages/ Based on the slides by Lydia Zheng and Jiannan Wang # **DL Applications** https://en.wikipedia.org/wiki/Amazon_Alexa https://didyouknowbg8.wordpress.com/2024/02/24/yolov9-a-leap-forward-in-object-detection-performance/ ### **Motivation** - Machine learning is very successful - To build a traditional ML pipeline: - Domain experts with longstanding experience - ☐ Specialized data preprocessing - ☐ Domain-driven meaningful feature engineering - ☐ Picking right models - ☐ Hyper-parameter tuning ### **ML Workflow** Users indirectly teach machines how to learn. ### **Classic ML and AutoML** ### Current ML/DL practice ### AutoML: true end-to-end learning Hutter & Vanschoren: AutoML, Neurips' 18 tutorial # Recap: Trend in 2023 Thinking about your current role, what tasks are most time consuming? (Responses ranked from most to least time consuming) # Trend in 2024 https://www.anaconda.com/resources/report/state-of-data-science-report-2024 ### **AutoML Vision** - For Non-Experts - AutoML allows non-experts to make use of machine learning models and techniques without requiring to become an expert in this field first - https://en.wikipedia.org/wiki/Automated_machine_learning - For Data Scientists - AutoML aims to augment, rather than automate, the work and work practices of heterogeneous teams that work in data science. - Wang, Dakuo, et al. "Human-Al Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated Al." Proceedings of the ACM on Human-Computer Interaction 3.CSCW (2019): 1-24. # What is AutoML? Automate the process of applying machine learning to realworld problems # **Outline** - Auto Feature Selection (Lecture 5) - Auto Hyperparameter Tuning (part in Lecture 5) - Auto Feature Generation (This Lecture) Neural Architecture Search (This Lecture) # **Auto Feature Generation** # **Motivation** - The model performance is heavily dependent on quality of features in dataset - It's time-consuming for domain experts to generate enough useful features # **Feature Generation** - Unary operators (applied on a single feature) - Discretize numerical features - Apply rule-based expansions of dates - Mathematical operators (e.g., Log Function) - Higher-order operators (applied on 2+ features) - Basic arithmetic operations (e.g., +, -, ×, ÷) - Group-by Aggregation (e.g., GroupByThenAvg, GroupByThenMax) ### **Featuretools** An open source library for performing automated feature engineering Design to fast-forward feature generation across multi-relational tables # **Concepts** - Entity is the relational tables - An EntitySet is a collection of entities and the relationships between them - Deep Feature Synthesis (DFS) - Algorithm that creates features by aggregating and transforming data across linked tables - Feature Primitives - Unary Operator: transformation (e.g., MONTH) - High-order Operator: Group-by Aggregation (e.g., GroupByThenSUM) # Entity sets Customer Product | Customer_id | Birthdate | MONTH(Birthdate) | SUM(Product.Price) | | Product_id | Customer_id | Name | Price | |------------------------|------------|------------------|--------------------|----------|------------|-------------|--------|-------| | I | 1995-09-28 | 9 | \$500 | GroupBy | I | I | Banana | \$100 | | 2 | 1980-01-01 | I | | ThenSUM: | 2 | I | Banana | \$100 | | 3 | 1999-02-02 | 2 | | | 3 | I | Orange | \$300 | | | | | | | 4 | 2 | Apple | \$50 | | Unary Operator: MONTH | | | | | | ••• | ••• | ••• | Feature Primitives # **Example** ### transactions (500 rows) transaction_id : Integer; index session_id : Integer; foreign_key transaction_time : Datetime; time_index product_id : Categorical; foreign_key amount: Double _ft_last_time : Datetime; last_time_index product_id ### products (5 rows) product_id : Categorical; index brand: Unknown _ft_last_time : Datetime; last_time_index ### session_id ### sessions (35 rows) session_id : Integer; index customer_id : Integer; foreign_key device: Categorical session_start : Datetime; time_index _ft_last_time : Datetime; last_time_index ### customer_id ### customers (5 rows) customer_id : Integer; index zip_code : PostalCode join_date : Datetime; time_index birthday: Datetime _ft_last_time : Datetime; last_time_index ### es['transactions'].head() ✓ 0.0s | | transaction_id | session_id | transaction_time | product_id | amount | _ft_last_time | |-----|----------------|------------|---------------------|------------|--------|---------------------| | 298 | 298 | 1 | 2014-01-01 00:00:00 | 5 | 127.64 | 2014-01-01 00:00:00 | | 2 | 2 | 1 | 2014-01-01 00:01:05 | 2 | 109.48 | 2014-01-01 00:01:05 | | 308 | 308 | 1 | 2014-01-01 00:02:10 | 3 | 95.06 | 2014-01-01 00:02:10 | | 116 | 116 | 1 | 2014-01-01 00:03:15 | 4 | 78.92 | 2014-01-01 00:03:15 | | 371 | 371 | 1 | 2014-01-01 00:04:20 | 3 | 31.54 | 2014-01-01 00:04:20 | ``` es.relationships ✓ 0.0s [<Relationship: transactions.product_id -> products.product_id>, <Relationship: transactions.session_id -> sessions.session_id>, <Relationship: sessions.customer_id -> customers.customer_id>] # Define Relationship rel = ft.Relationship(es, parent_dataframe_name='transactions', parent_column_name='product_id', child_dataframe_name='products', child_column_name='product_id' es = es.add_relationship(rel) ``` ``` feature_matrix, features_defs = ft.dfs(entityset=es, target_dataframe_name="customers") feature_matrix.head(5) ``` ✓ 0.4s | | zip_code | COUNT(sessions) | MODE(sessions.device) | NUM_UNIQUE(sessions.device) | CO | |-------------|----------|-----------------|-----------------------|-----------------------------|----| | customer_id | | | | | | | 5 | 60091 | 6 | mobile | 3 | | | 4 | 60091 | 8 | mobile | 3 | | | 1 | 60091 | 8 | mobile | 3 | | | 3 | 13244 | 6 | desktop | 3 | | | 2 | 13244 | 7 | desktop | 3 | | 5 rows × 75 columns ``` feature_matrix, features_defs = ft.dfs(entityset=es, target_dataframe_name="products") feature_matrix.head(5) ``` ✓ 0.0s | | COUNT(transactions) | MAX(transactions.amount) | MEAN(transactions.amount) | MIN(transactions.amount) | |------------|---------------------|--------------------------|---------------------------|--------------------------| | product_id | | | | | | 1 | 102 | 149.56 | 73.429314 | 6.84 | | 2 | 92 | 149.95 | 76.319891 | 5.73 | - Documentation: docs.featuretools.com - GitHub: github.com/alteryx/featuretools - **Key Takeaway**: Let Featuretools generate numerous features automatically, so you can focus on **modeling** and **analysis**. # **Outline** - Auto Feature Selection (Lecture 5) - Auto Hyperparameter Tuning (Part in Lecture 5) - Auto Feature Generation (This Lecture) Neural Architecture Search (This Lecture) # **Auto Hyperparameter Tuning** # A Simple Example with k-NN Credit to: Marius Lindauer - k-nearest neighbors is one of the simplest ML algorithms - Size of neighbourhood (k) is very important for its performance - The performance function depending on k is quite complex (not at all convex) # **Recap: Parameter Tuning and Evaluation** ### **Evaluation** - Ground-truth Label? - Evaluation Metric? ### Parameter Tuning - Grid Search - Random Search - BayesianOptimization # Recap: Grid Search & Random Search x: # of working hours (1, 2, ..., 12) y: # of sleeping hours (1, 2, ..., 12) Income(x, y) = Work(x) + Sleep(y) Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of machine learning research 13.Feb (2012): 281-305. # Recap: Bayesian Optimization ### Intuition - Want to find the <u>peak point of objective</u> function (eg. accuracy as a function of parameters) - > Fit a statistical model to the observed points and pick next best point where we believe the maximum will be - Next point is determined by an <u>acquisition</u> function that trades off exploration(objective) and exploitation(uncertainty) # **Hyperparameter Optimization (HPO)** ### Definition: Hyperparameter Optimization (HPO) Let - \bullet λ be the hyperparameters of a ML algorithm A with domain Λ , - $\mathcal{L}(A_{\lambda}, D_{train}, D_{valid})$ denote the loss of A, using hyperparameters λ trained on D_{train} and evaluated on D_{valid} . The hyperparameter optimization (HPO) problem is to find a hyperparameter configuration λ^* that minimizes this loss: $$\lambda^* \in \operatorname*{arg\,min}_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}, D_{train}, D_{valid})$$ Hutter & Vanschoren: AutoML, Neurips' 18 tutorial # **Hyperparameter Gradient Descent** I. Formulation as bilevel optimization problem $$\min_{\lambda} \mathcal{L}_{val}(w^*(\lambda), \lambda)$$ $$s.t. \quad w^*(\lambda) = \operatorname{argmin}_{w} \mathcal{L}_{train}(w, \lambda)$$ 2. Interleave optimization steps Hyperparameter gradient step w.r.t. $\nabla_{\lambda}\mathcal{L}_{val}$ Parameter gradient step w.r.t. $\nabla_w \mathcal{L}_{train}$ Hutter & Vanschoren: Auto ML, Neurips' 18 tutorial # **Neural Architecture Search (NAS)** # Challenge in Deep Learning Performance is very sensitive to many hyperparameters Optimization algorithm, learning rates, momentum, batch normalization, batch sizes, dropout rates, weight decay, data augmentation, ... Easily 20-50 design decisions Hutter & Vanschoren: AutoML, Neurips' 18 tutorial ### **Motivation** ### How can someone come out with such an architecture? He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016 # **Neural Architecture Search: Big Picture** # NAS is also Hyperparameter Optimization ### **Key Challenges:** ### 1. Vast Search Space • The number of possible neural architectures is huge. ### 2. Computational Cost • Training each candidate network is expensive (time, GPU resources). ### 3. Overfitting to Benchmark Datasets Risk of overly specialized solutions. # **Search Space** - Define which neural architectures a NAS approach might discover in principle - ❖ May have human bias → prevent finding novel architectural building blocks # **Search Strategy** ### Basic Idea Explore search space (often exponentially large or even unbounded) ### Methods - > Random Search - Bayesian Optimization [Bergstra et al., 2013] - Evolutionary Methods [Angeline et al., 1994] - > Reinforcement Learning [Baker et al., 2017] - **....** # **Example: Differentiable Architecture Search (DARTS)** Continuous relaxation of the search space to enable gradient-based optimization. Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint optimization of the mixing probabilities and the network weights by solving a bilevel optimization problem. (d) Inducing the final architecture from the learned mixing probabilities. #### High level idea of DARTS Bi-level optimization Update the architecture such that the target model performs well on the val. set #### **Performance Estimation Strategy** #### Basic Idea > The process of estimating predictive performance #### Methods - >> Simplest option: perform a training and validation of the architecture on data - Initialize weights of novel architecture based on weights of other architectures have been trained before - Using learning curve extrapolation [Swersky et al., 2014] - **>** #### **H20 Driverless AI Demo** - . Will AutoML software replace Data Scientists? - 2. How to approach AutoML as a data scientist? https://www.youtube.com/watch?v=ZqCoFp3-rGc #### Trend in 2024 https://www.anaconda.com/resources/report/state-of-data-science-report-2024 #### Trend in 2024 #### STUDENTS AND ACADEMICS / STUDENTS AND ACADEMICS What topics, tools, or skills are you (as a student) learning in preparation for entering the data science/ML/IT field?/What top three topics, tools, or skills is your institution teaching students of data science, machine learning, and AI? #### Summary What is AutoML and why we need it? How AutoML works? - Auto Feature Selection (Lecture 5) - Auto Hyperparameter Tuning (Lecture 5 and this Lecture) - Auto Feature Generation (This Lecture) - Neural Architecture Search (This Lecture) # **CMPT 733 Explainable Machine Learning** Instructor Zhengjie Miao Course website https://coursys.sfu.ca/2025sp-cmpt-733-gl/pages/ Based on the slides by: Xiaoying Wang and Jiannan Wang #### **Outline** - Motivation: Why Explainable ML matters? - Big Picture: Taxonomy - State-of-the-art Techniques #### **Evaluation** Bird: 99.0% Bird: 99.9% Which model are you going to choose? #### **Evaluation** Which model are you going to choose? #### Debugging Q: How symmetrical are the white bricks on either side of the building? A: very Q: How asymmetrical are the white bricks on either side of the building? A: very Q: How fast are the bricks speaking on either side of the building? A: very MUDRAKARTA, P.K., TALY, A., SUNDARARAJAN, M. AND DHAMDHERE, K., 2018. DID THE MODEL UNDERSTAND THE QUESTION?. ARXIV PREPRINT ARXIV:1805.05492. #### Debugging # How symmetrical are the white bricks on either side of the building? red: high attribution **blue**: negative attribution gray: near-zero attribution #### **Improvement** Generalization error + human experience ANON, ICCV'19 TUTORIAL ON INTERPRETABLE MACHINE LEARNING IN COMPUTER VISION # **Legal Concerns** SR 11-7: Guidance on Model Risk Management BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM WASHINGTON, D.C. 20551 DIVISION OF BANKING SUPERVISION AND REGULATION SR 11-7 April 4, 2011 TO THE OFFICER IN CHARGE OF SUPERVISION AND APPROPRIATE SUPERVISORY AND EXAMINATION STAFF AT EACH FEDERAL RESERVE BANK SUBJECT: Guidance on Model Risk Management # Art. 22 GDPR Automated individual decisionmaking, including profiling #### **Outline** Motivation: Why Explainable ML matters? Big Picture: Taxonomy State-of-the-art Techniques #### **Taxonomy** Transparent Models Linear Regression, Decision Tree, KNN, Bayesian Network... Post-hoc Explanation Global Model Permutations, Partial Dependence Plots, Explanation Global Surrogate ... Individual Prediction Explanation Attribution, Influential Instances, Local Surrogate ... #### **Taxonomy** Transparent Models Linear Regression, Decision Tree, KNN, Bayesian Network... Post-hoc Explanation Global Model Explanation Permutations, Partial Dependence plots, Global Surrogate ... Individual Prediction Explanation Attribution, Influential Instances, Local Surrogate . . . ## **Linear Regression** House rent (z) with respect to its area (x) and distance from SFU (y) $$z = 2.1x - 2.4y + 1800$$ How do area and distance affect the house rent? #### **Decision Tree** Does a student own a car? Why does the model predict student A has a car? #### **Taxonomy** Transparent Linear Regression, Decision Tree, KNN, Bayesian Network... Models Permutations, Partial Dependence Plots, Global Model **Explanation** Global Surrogate ... Post-hoc **Explanation** Individual Prediction Attribution, Influential Instances, Explanation Local Surrogate ... #### **Permutations** Main idea: measure the importance of a feature by calculating the increase in the model's prediction error after permuting the feature | ID | Distance to SFU | # Bathroom | Area | Distance to Bus Stop | ••• | |-------|-----------------|------------|---------|----------------------|-----| | I | 5.0 km | I | 670 ft2 | 300 m | | | 2 | 8.2 km | 2 | 970 ft2 | 120 m | | | 3 | 2.3 km | 2 | 880 ft2 | 1200 m | | | | | | | | | | 9999 | 10.0 km | I | 680 ft2 | 50 m | | | 10000 | 7.8 km | I | 730 ft2 | 230 m | | #### **Permutations** - Input: trained model and labeled dataset for evaluation - Output: relative importance for each feature - Method: - Apply the model on original dataset and get an estimation error E - For each feature: - Permute feature and apply the model again on the permuted data to get a new estimation error E' - The feature importance can be measured by E'-E or E'/E #### **Partial Dependence Plots** Main idea: show the marginal effect one or two features have on the predicted outcome of a machine learning model | ID | Temperature | Humidity | Wind Speed | Rental# | |----|-------------|----------|------------|---------| | 1 | 20 | 30 | 20 | 3000 | | 2 | 25 | 35 | 10 | 2500 | | 3 | 22 | 25 | 15 | 3300 | | 4 | 30 | 20 | 18 | 2000 | | •• | | ••• | ••• | | #### **Partial Dependence Plots** Let x_s be the feature set $(|x_s| \in \{1,2\})$ we want to examine, and x_c be the rest of the features used in the model \hat{f} : - Partial dependence function: $\hat{f}_{x_s}(x_c) = E_{x_c}[\hat{f}(x_s, x_c)] = \int \hat{f}(x_s, x_c) dP(x_c)$ - Can be estimated by: $\hat{f}_{x_s}(x_c) = \frac{1}{n} \sum_{i=1}^n \left(x_s, x_c^{(i)} \right)$ ## **Global Surrogate** Main idea: train a transparent model to approximate the predictions of a black box model ## **Global Surrogate** $\hat{y}^{(i)}$ and $\hat{y}_*^{(i)}$: the target model and surrogate model's prediction for the ith input data R-squared: measure how good the surrogate model is in approximating the target model $$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{*}^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{n} (\hat{y}^{(i)} - \hat{y}_{avg})^{2}}$$ #### **Taxonomy** #### **Attribution** - Main idea: - Attribute a model's prediction on a sample to its input features - Approaches - Ablation - Shapely value - • #### **Attribution (Ablation)** Ablation: drop each feature and attribute the change in prediction to the feature #### **Attribution (Ablation)** - Saliency maps: compute the relative importance of each feature - o if change/remove this feature, how much is the prediction affected? Sentiment an intelligent fiction about learning through cultural clash. QA What company won free advertisement due to QuickBooks contest? MLM [CLS] The [MASK] ran to the emergency room to see her patient . [SEP] Wallace et al. 2020 ## **Local Surrogate (LIME)** Main idea: Test what happens to the prediction when give variations of data into the machine learning model Ribeiro et al. 2016 #### LIME: Local Interpretable Model-Agnostic Explanations - Pick a model class interpretable by humans, e.g., linear regression - Locally approximate global (blackbox) model - Simple model globally bad, but locally good Ribeiro et al. 2016 #### **LIME Sentiment Analysis Example** The movie is mediocre, maybe even bad. **Negative** 99.8% Negative 98.0% Negative 98.7% **Positive** 63.4% Positive 74.5% Negative 97.9% The movie is mediocre, maybe even bad. #### **Shapley Value** - Classic result in game theory on distributing the total gain from a cooperative game - Introduced by Lloyd Shapley in 1953, who won the Nobel Prize in Economics in 2012 - Popular tool in studying cost-sharing, market analytics, voting power, and most recently explaining ML models Lloyd Shapley in 1980 # **Attribution (Shapely Value)** - Shapely value: derive from game theory on distributing gain in a coalition game - Coalition game: players collaborating to generate some gain, function val(S) represents the gain for any subset S of players - Game: prediction task - Players: input features - \circ Gain: marginalized actual prediction minus average prediction $val_{x}(S)$ = $$\int \hat{f}(x_1, x_2, \dots, x_p) dP_{x \notin S} - E(\hat{f}(X))$$ • Marginal contribution of a feature i to a subset of other features: val_x $(S \cup \{x_i\}) - val_x(S)$ ## **Attribution (Shapely Value)** • Shapely value of a feature i on sample x: weighted aggregation of its marginal contribution over all possible combinations of subsets of other features $$\sum_{S \subseteq \{x_1, x_2, \dots, x_p\} \setminus \{x_i\}} \frac{|S|! (p - |S| - 1)!}{p!} (val_x(S \cup \{x_i\}) - val_x(S))$$ • Intuition: The feature values enter a room in random order. All feature values in the room participate in the game (= contribute to the prediction). The Shapley value of a feature value is the average change in the prediction that the coalition already in the room receives when the feature value joins them. ## **Example** - A company with two employees Alice and Bob - No employees, 0 profit - Alice alone makes 20 units of profit - Bob alone makes 10 units of profit - Alice and Bob make total 50 units of of profit - What should be the bonuses be? | All Possible Orders | Marginal for Alice | Marginal for Bob | |---------------------|--------------------|------------------| | Alice, Bob | | | | Bob, Alice | | | | Shapley Value | | | # **Example** - A company with two employees Alice and Bob - No employees, 0 profit - Alice alone makes 20 units of profit - Bob alone makes 10 units of profit - Alice and Bob make total 50 units of of profit - What should be the bonuses be? | All Possible Orders | Marginal for Alice | Marginal for Bob | |---------------------|--------------------|------------------| | Alice, Bob | 20 | 30 | | Bob,Alice | 40 | 10 | | Shapley Value | 30 | 20 | # **Attribution (Shapely Value)** - Two challenges when computing shapely value: - Exponential time since the permutation - Cannot inference on models when some features are not provided - SHAP (SHapley Additive exPlanations) provide solutions for these two challenges: - KernelSHAP: an approximation solution for all models: - Sample a subset of feature orders - Filling missing features with background dataset provided by user LUNDBERG, SCOTT M., AND SU-IN LEE. "A UNIFIED APPROACH TO INTERPRETING MODEL PREDICTIONS." ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS. 2017. ### **SHAP Example** https://github.com/shap/shap/blob/master/notebooks/tabular_examples/tree_based_models/Census%20income%20classification%20with%20XGBoost.ipynb #### XGBoost on Adult dataset, classic feature attribution ``` xgboost.plot_importance(model) pl.title("xgboost.plot_importance(model)") pl.show() ``` ``` xgboost.plot_importance(model, importance_type="gain") pl.title('xgboost.plot_importance(model, importance_type="gain")') pl.show() ``` #### Bar chart of mean importance #### **SHAP Summary Plot** ## **Influential Instances** Main idea: debug machine learning model by identifying influential training instances (a training instance is influential when its <u>deletion</u> from training data considerably changes the model's prediction) The most influential training sample for each model KOH, PANG WEI, AND PERCY LIANG. "UNDERSTANDING BLACK-BOX PREDICTIONS VIA INFLUENCE FUNCTIONS." ICML'17 ## Influential Instances - Naïve approach: deletion diagnostics - Train a model on all data instances, predict on test data and choose a target sample, for example: an incorrectly predicted sample with high confidence - For each training data, remove the data and retrain a model, predict on target sample and calculate the differences between the prediction and original prediction - Get the most influential top K instances (very likely to be mislabeled in this scenario) - Train a transparent model to find out what distinguishes the influential instances from the non- influential instances by analyzing their features (optional, for better understand the model) ## **Evaluation** - Human review: which method that human can get more insight of the model? - Fidelity: how well does the method approximate the black box model? - Stability: how much does an explanation differ for similar instances? - Complexity: computational complexity of the method - Coverage: the types of models that the method can explain • ... ### **Available Tools** - LIME https://github.com/ankurtaly/Integrated-Gradients - SHAP implementation in Python https://github.com/slundberg/shap - https://shap.readthedocs.io/en/latest/tabular_examples.html - Captum: PyTorch model interpretability tool https://github.com/pytorch/captum - ELI5: a library for debugging/inspecting machine learning classifiers and explaining their prediction https://eli5.readthedocs.io/en/latest/ - Influence function implementation in Python https://github.com/kohpangwei/influence-release ### References - Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable", 2021. https://christophm.github.io/interpretable-ml-book/. - Anon. KDD'19 Explainable Al Tutorial. Retrieved September 13, 2019 from https://sites.google.com/view/kdd19-explainable-ai-tutorial - Anon. ICCV'19 Tutorial on Interpretable Machine Learning in Computer Vision. Retrieved September 20, 2019 from https://interpretablevision.github.io/ # Summary Transparent Models Linear Regression, Decision Tree, KNN, Bayesian Network... Post-hoc Explanation Global Model Permutations, Partial Dependence Plots, Explanation Global Surrogate ... Individual Prediction Explanation Attribution, Influential Instances, Local Surrogate ...