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CMPT 733

Deep Learning (I)

Instructor Zhengjie Miao

Course website https://coursys.sfu.ca/2025sp-cmpt-733-g1/pages/
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https://didyouknowbg8.wordpress.com/2024/02/24/yolov9-a-leap-forward-in-object-detection-performance/

https://en.wikipedia.org/wiki/Amazon_Alexa

DL Applications



2025-02-11 Steven Bergner, Zhengjie Miao - CMPT 733 3

DL Applications



2025-02-11 Steven Bergner, Zhengjie Miao - CMPT 733 4

DL & AI trends



• Renaissance of artificial neural networks

• ML recap

• Representation learning vs feature engineering

• Background

• Neural networks

• Linear Algebra, Optimization

• Regularization

• Construction and training of layered models

• Frameworks for deep learning
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Overview



• The idea of neural networks had been around 

for fifty years, but unsuccessful

• Major AI figures had trashed it, even proving 

that early versions had very limited 

expressiveness

• Instead, machine learning was based on other 

models, for example the support vector 

machine and graphical models. Neural 

networks did not perform well.

LeCun, Hinton, Bengio: Deep Learning
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• “No, let’s do it this way instead:” 

these networks learn extremely 
complex functions, so they need much 
more data than existing ML approaches, 
GPUs to train, and algorithms to enable 
them to learn more effectively

• Around 2010, these models began 
smashing records in speech and image 
recognition
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LeCun, Hinton, Bengio: Deep Learning
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Recap: What is machine learning?
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Mathematical principles and computer algorithms exploiting data

• for extracting what is general

• so as to be able to say something meaningful about unseen cases

• to identify which configurations of variables are plausible

• to generate new plausible configurations

• to learn to predict, classify, take decisions



Labeled Data

Test Data

Machine Learning 

algorithm

Learned model Prediction

Training

Prediction

Error

Recap: Supervised Learning Setting
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= cat

= cat

= cat

= not cat

Example: Image Classification
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• We’d like to learn a cat classifier, which is a function f from the input 
space to a class
• In this example, input space = {pictures}, represented as a vector x of pixel 

values

• class ∈ {0, 1}

• Ideally,

• f = 1.

Example: Image Classification
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RawData

TurningRawData into Connection Data
◦ A connection is a sequence of HTTP requests starting and ending at some well-defined times

Turning Connection Data into Feature Vectors
◦ Requiring a fair bit of domain knowledge

◦ Asking yourself how to distinguish attacks from normal connections (e.g., number of failed login
attempts, duration of the connection )
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Recap: Feature Extraction
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Feature Extraction for Cat Classification
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https://learnopencv.com/image-recognition-and-object-detection-part1/

Example Features:
1. Shape-Based Features

• Ear Shape

• Face Shape

• Body Proportions

2. Texture-Based Features
• Fur Texture

• Pattern Recognition

3. Color-Based Features

4. Facial Features
• Eye Shape and Size

• Nose Structure

5. Whisker Density and Placement



• Many classical machine learning methods work well because of human-designed input 

features/data representations

• ML becomes just optimizing weights of the model to best make a final prediction (tuning)

Classical ML vs. Deep Learning
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⚫ Transform into the right 

representation

⚫ Classify points simply by 

threshold on radius axis

⚫ Single neuron with non-

linearity can do this

[Goodfellow, Bengio, Courville 2016]

Representations matter
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https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Deep Learning 
Subfield of machine learning: 

• Learn good representations/extract good features of data

• Find good predictors using these representations/features

• Learn a hierarchy of representations/features that build on each other in layers
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[Goodfellow, Bengio, Courville 2016]
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Depth: Layered composition



Components of learning

[Goodfellow, Bengio, Courville 2016]
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• Hand designed program

• Input → Output 

• Increasingly automated

• Simple features

• Abstract features

• Mapping from features



• Manually designed features/representations:

• require domain knowledge

• may be incomplete 

• may take a long time to design or validate.

• Deep learning provides a very flexible and (almost) universal framework for:

• representing world, visual, and linguistic information

• creating end-to-end joint system learning representations and predictors

• utilizing large amounts of training data

Why is DL useful? 
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MNIST dataset

[Goodfellow, Bengio, Courville 2016]
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Growing dataset size



Several big improvements in recent years in NLP 
✓ Machine Translation

✓ Sentiment Analysis

✓ Dialogue Agents

✓ Question Answering

✓ Text Classification     …

State of the art in …
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Basics

Neural Network
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𝒉 =  𝝈𝟏(𝐖𝟏𝒙 + 𝒃𝟏)

𝒚 = 𝝈𝟐(𝑾𝟐𝒉 + 𝒃𝟐)

𝒉

𝒚

𝒙

4 + 2 = 6 neurons (not counting inputs)

[3 x 4] + [4 x 2] = 20 weights 

4 + 2 = 6 biases

26 learnable parameters

Parameter vector: 𝜽

Weights

Activation functions

Neural Network
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Simple Neural Network Deeper Neural Network

Neural Network Architectures

H. Kataoka et al., “Feature evaluation of deep convolutional 
neural networks for object recognition and detection.” arXiv 
preprint arXiv:1509.07627.

How deep is “deep learning?”
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Computational graph

[Goodfellow, Bengio, Courville 2016]
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• Informal Conjecture. For every function 𝑓 we might want to learn from data, there 

exists a “not too large” neural network that can represent 𝑓.

• If true, the upshot is that we don’t need to consider any other classes of models in 

machine learning when we want to learn a function.

Why Neural Networks?
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Basics

Linear Algebra and Optimization
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Linear algebra

⚫ Tensor is an array of numbers

− Multi-dim: 0d scalar, 1d vector, 2d matrix/image, 3d RGB image

⚫ Matrix (dot) product

⚫ Dot product of vectors A and B

− (m = p = 1 in above notation)
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[Goodfellow, Bengio, Courville 2016]



Linear algebra: Norms

[Goodfellow, Bengio, Courville 2016]
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Learning a classifier = optimizing over data with respect to parameters. 

Given:

• m labeled samples 𝑆 = (x1,  y1), … (xm,  ym)

• A loss function to penalize errors (e.g., 𝑙 𝑦, 𝑦′ = 𝑦 − 𝑦′ 2)

• A model 𝑓(𝑤, 𝑥) (e.g., 𝑓(𝑤, 𝑥) = 𝑤 𝑥 + 1) 

Goal: Minimize l with regard to 𝑤: argminw σ𝑖=1
𝑚 𝑙(𝑦𝑖, 𝑓 𝑤, 𝑥𝑖 )

Learning = Optimization

Sample labeled 
data

(batch)

Forward it 
through the 
network, get 
predictions

Back-
propagate the 

errors

Update the 
network 
weights
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Nonlinearities

⚫ ReLU

⚫ Softplus

⚫ Logistic Sigmoid
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[Goodfellow, Bengio, Courville 2016]



Forward propagation

• Suppose we start with the input x1, x2, …, xn

• These are the values of the first layer of the network (the input layer)

• Compute the value of neuron k in the next layer

 w1,kx1 + w2,kx2 
+ … + wn,kxn 

+ bk where wi,k is a weight associated

• Assuming ReLU/Sigmoid as the activation function, neuron k will be set to:

Max(0, w1,kx1 + w2,kx2 + … + wn,kxn + bk) or

𝜎(w1,kx1 + w2,kx2 + … + wn,kxn + bk)
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1

0.5

0.7

0.3

0.8

0.5

0.1

If large, 

cat

else, not 

cat

Input 
layer

Hidden layer

Output 
layer

0.9

𝐿𝑜𝑠𝑠 = (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐴𝑛𝑠𝑤𝑒𝑟− 𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑦𝑒r)2

= (1 − 0.9)2

= 0.01

Calculate the Loss
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0.9

0.3

0.2

0.1

0.2

0.8

0.4

If large, 

cat

else, not 

cat

Input 
layer

Hidden layer

Output 
layer

0.8

Calculate the Loss

𝐿𝑜𝑠𝑠 = (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐴𝑛𝑠𝑤𝑒𝑟− 𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑦𝑒r)2

= (0 − 0.8)2

= 0.64
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[Goodfellow, Bengio, Courville 2016]

Approximate optimization
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[Goodfellow, Bengio, Courville 2016]

Gradient descent



Gradient descent
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https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

• Recall that ∇𝑓(𝒙) is the direction of 

greatest increase in the function value

• A greedy optimization algorithm that 

iteratively steps in the negative gradient 

direction

• More formally, let 𝛼 be a small step size 

(the learning rate). The gradient descent 

algorithm iteratively updates the weights:

∀𝑡: 𝑤𝑡+1 = 𝑤𝑡  − 𝛼𝛻𝑤𝑙 𝑤𝑡



Stochastic Gradient descent
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For gradient descent, we need to compute the gradient of  
  𝑙 𝑤𝑡  = σ𝑖=1

𝑚 𝑙(𝑦𝑖, 𝑓 𝑤𝑡, 𝑥𝑖 )
• Slow when we have millions of samples!

SGD: At time t:
• pick random subset B with b samples of training set

• update: 𝑤𝑡+1 = 𝑤𝑡 − 𝛼 ⋅ 𝛻𝑤 σ𝑖∈𝐵 𝑙(𝑦𝑖, 𝑓 𝑤𝑡, 𝑥𝑖 )



Critical points

Saddle point – 1st and 2nd derivative vanish

Poor conditioning:

1st  derivative large in one and small in 
another direction
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[Goodfellow, Bengio, Courville 2016]



Optimization algorithm

⚫ Lots of variants address choice of learning rate

⚫ See Visualization of Algorithms

⚫ AdaDelta and RMSprop often work well
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https://www.ruder.io/optimizing-gradient-descent/#visualizationofalgorithms

https://www.ruder.io/optimizing-gradient-descent/


Neural network playgrounds

⚫ http://playground.tensorflow.org/

− Try out simple network configurations on TF Playground

⚫ https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

− Visualize linear and non-linear mappings
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http://playground.tensorflow.org/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Back Propagation
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For gradient descent, we need to compute the gradient of  

  𝑙 𝑤𝑡  =  σ𝑖=1
𝑚 𝑙 𝑖 (𝑤𝑡) = σ𝑖=1

𝑚 𝑙(𝑦𝑖, 𝑓 𝑤𝑡, 𝑥𝑖 )

Challenge: How to compute partial derivatives of huge network?

Back propagation illustration from CS231n Lecture 4

Compute gradient of each constituent 𝑙 𝑖 (𝑤𝑡) 

by recursively applying chain rule

• called the “Backpropagation algorithm”



Back Propagation Example
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Suppose we have the single training sample 𝒙 = (0.5, 1), 𝑦 = 0, and the following 

network:
x1

x2

z

𝑤2=2

𝑤1=1

Let 𝑙 = (𝑧 − 𝑦)2 , then by the chain rule:

𝜕𝑙

𝜕𝑤1
= 2(𝑧 − 𝑦)

𝜕𝑧

𝜕𝑤1

Denote z = 𝜎(w1x1+w2x2) = 𝜎(f) 

= 2 𝑧 − 𝑦
𝜕𝜎(f) 

𝜕𝑓

𝜕f 
𝜕𝑤1

= 𝜎(f)(1 − 𝜎(f))x1

= 2(z − y)z(1 − z)x1



Back Propagation Example
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Suppose we have the single training sample 𝒙 = (0.5, 1), 𝑦 = 0, and the following 

network:
x1

x2

z

𝑤2=2

𝑤1=1 • First we have a forward propagation pass 

to calculate the value of z:

• z = 𝜎(w1x1+w2x2) = 𝜎(2.5) ≈ 0.924

𝜕𝑙

𝜕𝑤1
= 2(z − y)z(1 − z)x1≈ 0.065, 

𝜕𝑙

𝜕𝑤2
= 2(z − y)z(1 − z)x2≈ 0.13

𝑤1
′ = 𝑤1 − 𝛼 ⋅

𝜕𝑙

𝜕𝑤1
 = 1 −(0.1)(0.065) = 0.9935

𝑤2
′ = 𝑤2 − 𝛼 ⋅

𝜕𝑙

𝜕𝑤2
 = 2 −(0.1)(0.13) = 1.987



Back Propagation and SGD in Practice

• For a deep neural network, back propagation calculates the
partial derivatives necessary for SGD.

• Do I have to program all of this calculus from scratch?

• NO! This is a major part of what deep learning libraries like 
Pytorch and tensorflow implement for you.
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Regularization
Reduced generalization error without impacting training error



• Learned hypothesis may fit training 

data very well, but fail to generalize 

to new examples (test data)

• To avoid overfitting, use explicit 

regularization

https://www.neuraldesigner.com/images/learning/selection_error.svg

Overfitting
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Constrained optimization

⚫ Squared L2 encourages small 

weights

⚫ L1 encourages sparsity of model 

parameters (weights)

Unregularized 
objective

L2 
regularizer
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[Goodfellow, Bengio, Courville 2016]



Learning curves

⚫ Early stopping before validation error starts to increase
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[Goodfellow, Bengio, Courville 2016]



Dataset augmentation
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[Goodfellow, Bengio, Courville 2016]



Dataset augmentation

Steven Bergner, Zhengjie Miao - CMPT 733 522025-02-11

Invariance property

Shorten et al., “Text Data Augmentation for Deep Learning.” Journal of Big Data. 8. 10.1186/s40537-021-00492-0. 



Bagging

⚫ Average multiple models trained on subsets of the data

⚫ First subset: learns top loop, Second subset: bottom loop
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[Goodfellow, Bengio, Courville 2016]



Dropout

⚫ Random sample of  

connection weights is set 

to zero

⚫ Train different network 

model each time

⚫ Learn more robust, 

generalizable features

[Goodfellow, Bengio, Courville 2016]
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Multitask learning

⚫ Shared parameters are trained with 

more data

⚫ Improved generalization error due 

to increased statistical strength

[Goodfellow, Bengio, Courville 2016]
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Software for Deep Learning

2025-02-11 Steven Bergner, Zhengjie Miao - CMPT 733 56



Current Frameworks

⚫ Tensorflow / Keras

⚫ PyTorch

⚫ DL4J 

⚫ Caffe (superseded by Caffe2, which is merged into PyTorch)

⚫ And many more

⚫ Most have CPU-only mode but much faster on NVIDIA GPU
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https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software


Development strategy

⚫ Identify needs: High accuracy or low accuracy?

⚫ Choose metric

− Accuracy (% of examples correct), Coverage (% examples processed)

− Precision TP/(TP+FP), Recall TP/(TP+FN)

− Amount of error in case of regression

⚫ Build end-to-end system

− Start from baseline, e.g. initialize with pre-trained network

⚫ Refine driven by data
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Pytorch example

https://pytorch.org/tutorials/beginner/basics/intro.html
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Tensors ~=Numpy Arrays
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Dataset
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Dataset
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Going to try to classify 

images of clothing

DataLoader
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In this example, we want to 

classify images, e.g., classify

this as a shirt

Iterate through DataLoader
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def i n i t ( s e l f ) :  is Python 

syntax for a constructor

Inherits from nn.module 

defined by pytorch

Network architecture. 

nn.L inear(input_dim, 

output_dim), this model for 28 by 

28 pixel images

Flatten() turns a tensor 

into a 1d-tensory

Goes through layers 

in order

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

Defining a Multilayer Perceptron



Forward Propagation
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3 gray scale each 28 by 
28 pixels images

3 flattened images, each 
28*28 = 784 values

Flattening
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Network Layers



Sequential and Softmax
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Hyperparameters:
Learning_rate,

#epochs, batch_size

Training with SGD and Back Propagation
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Prediction and Testing
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Sources

⚫ I. Goodfellow, Y. Bengio, A. Courville “Deep Learning” MIT Press 2016 [link]

⚫ Ismini Lourentzou, “Introduction to Deep Learning,” UIUC CS 510

⚫ Brandon Fain, “Everything Data”, Duke CS 216
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http://www.deeplearningbook.org/
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