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what is deep learning

Reasoned for a second

Deep learning is a subfield of machine learning
that focuses on training large, multi-layered (or
"deep"”) neural networks to learn patterns and
make decisions or predictions from complex data.
Unlike traditional machine learning techniques that
typically rely on manually engineered feature sets,
deep learning methods learn directly from raw data
(e.g., images, text, sound) by adjusting their
internal parameters through a process called
backpropagation.

Key points about deep learning:

1. Neural Networks: Deep learning models are
built on neural network architectures with many
stacked layers, enabling them to learn multiple
levels of representation.

2. Representation Learning: These models
automatically extract complex patterns and
structures from the data, minimizing the need
for feature engineering.
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* Renaissance of artificial neural networks

* ML recap

* Representation learning vs feature engineering
* Background

* Neural networks

* Linear Algebra, Optimization

* Regularization

* Construction and training of layered models

* Frameworks for deep learning
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LeGun, Hinton, Bengio: Deep lear_ning

&he New Hork Times 2

GIVE THE TIMES

Turing Award Won by 3

 The idea of neural networks had been around : Co s :
Pioneers in Artificial Intelligence

for fifty years,but unsuccessful

* Major Al figures had trashed it,even proving
that early versions had very limited
expressiveness

* Instead,machine learning was based on other
models,for example the support vector
machine and graphical models.Neural

From left, Yann LeCun, Geoffrey Hinton and Yoshua Bengio. The

o researchers worked on key developments for neural networks, which
n etwo r' |(S d | d n Ot P e r'fo r'l' “ ‘ Wel | are reshaping how computer systems are built.
[ ]
From left, Facebook, via Associated Press; Aaron Vincent Elkaim for The New
York Times; Chad Buchanan/Getty Images
By Cade Metz
March 27, 2019 f v ||
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LeGun, Hinton, Bengio: Deep Learning

Popularity
* “No,let’s do it this way instead:”

these networks learn extremely Sl
complex functions, so they need much R
more data than existing ML approaches,
GPUs to train, and algorithms to enable
them to learn more effectively

New Hopes

Al winter |l

* Around 2010,these models began
smashing records in speech and image
recognition
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Machine Learning Tasks

scikit-learn
algorithm cheat-sheet
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known

clustering
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WORKING
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Mathematical principles and computer algorithms exploiting data

* for extracting what is general

* so as to be able to say something meaningful about unseen cases
* to identify which configurations of variables are plausible

* to generate new plausible configurations

* to learn to predict, classify, take decisions
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Machine Learning

Labeled Data algorithm

Training

Prediction

Test Data Learned model Prediction
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= cat

N =cat = hot cat
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* We'd like to learn a cat classifier, which is a function f from the input
space to a class
* In this example, input space = {pictures}, represented as a vector x of pixel

values
* class € {0, 1}
* ldeally,
4 )
o f = |
- _/
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Raw Data

1 in24.inetnebr.com - - [01/Aug/1995:00:00:01 -0400] "GET /shuttle/missions/sts-68/news/sts-68-mcc-05
2 uplherc.upl.com - - [01/Aug/1995:00:00:07 -0400] "GET / HTTP/1.0" 304 0
3 uplherc.upl.com - - [01/Aug/1995:00:00:08 -0400] "GET /images/ksclogo-medium.gif HTTP/1.0" 304 @

4 uplherc.upl.com - - [01/Aug/1995:00:00:08 -0400] "GET /images/MOSAIC-logosmall.gif HTTP/1.0" 304 0

Turning Raw Data into Connection Data
> A connection 1s a sequence of HTTP requests starting and ending at some well-defined times

Turning Connection Data into Feature Vectors
> Requiring a fair bit of domain knowledge

> Asking yourself how to distinguish attacks from normal connections (e.g., number of failed login
attempts, duration of the connection )
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Feature Extraction for Gat Glassification

Example Features:

|. Shape-Based Features
* Ear Shape
* Face Shape
* Body Proportions
2. Texture-Based Features
* Fur Texture
* Pattern Recognition

3. Color-Based Features
4. Facial Features

* Eye Shape and Size
* Nose Structure

5. Whisker Density and Placement

Learning | Label
Algorithm Assignment
Preprocessing

Input image SVM Cator
Features : HAAR, HOG, Random Background

SIFT, SURF Forests,
ANN

https://learnopencv.com/image-recognition-and-object-detection-part1/

2025-02-11 Steven Bergner, Zhengjie Miao - CMPT 733 14




Glassical MLvs. Deep Learning

* Many classical machine learning methods work well because of human-designed input

features/data representations
* ML becomes just optimizing weights of the model to best make a final prediction (tuning)

Machine Learning in Practice Feature NER
Current Word v
Previous Word Ny
Next Word v
\ Current Word Character n-gram all
Current POS Tag v
Surrounding POS Tag Sequence v
Describing your data with L : Current Word Shape v
understand algorithm Presence of Word in Left Window | size 4
Presence of Word in Right Window | size 4
\ J
1 \_Y_,
Domain specific, requires Ph.D. Optimizing the
level talent weights on features
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Cartesian coordinates

Polar coordinates

Ry

2025-02-11

« Transform into the right
representation

o Classify points simply by
threshold on radius axis

o Single neuron with non-
linearity can do this

[Goodfellow, Bengio, Courville 2016]
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Subfield of machine learning:
* Learn good representations/extract good features of data

* Find good predictors using these representations/features
* Learn a hierarchy of representations/features that build on each other in layers

Machine Learning

& — & - 77 I

Input Feature extraction Classification Qutput

Deep Learning

& — izt — [

Input Feature extraction + Classification Output
https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png
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Depth: Layered composition

Output

{object identity)

3rd hidden laver

{object parts)

2nd hidden layver
(corners and

contours)

1st hidden laver

(edges)

Visible laver

{input pixels)

[Goodfellow, Bengio, Courville 2016]
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* Hand designed program

* Input — Output

* Increasingly automated

2025-02-11

* Simple features
* Abstract features
* Mapping from features

[Goodfellow, Bengio, Courville 2016]

Steven Bergner, Zhengjie Miao -

Output
Output Output Mailz?ui:;c}m
Additional
. Mapping from Mapping from layers of more
Output
features features abstract
features
Hand- Hand- Simple
designed designed Features feat P
program features CARIEES
Input Input Input Input
. Deep
Rule-based Cla::u-_;]c learning
o ) machine
systems learning Representation

learning




Why is DL useful?

* Manually designed features/representations:
* require domain knowledge
* may be incomplete
* may take a long time to design or validate.
* Deep learning provides a very flexible and (almost) universal framework for:
* representing world, visual, and linguistic information
* creating end-to-end joint system learning representations and predictors

* utilizing large amounts of training data
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MNIST dataset
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100%a According to Microsoft's
speech group: Traditional CV ) Deep Leaming
Using DL
10%
4%
2%
1% | >
1990 2000 2010
Deep Learning in Speech Recognition
Several big improvements in recent years in NLP ImageNet: The “computer vision World Cup”

Machine Translation
Sentiment Analysis
Dialogue Agents
Question Answering
Text Classification

DN NI NI NI

2025-02-11 Steven Bergner, Zhengjie Miao - CMPT 733 22




Neural Network
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Hidden

Weights

Input

h = 0'1(W x+b1)
y Z0,(Wyh + b;)

Activation functions

4 + 2 = 6 neurons (not counting inputs)
[3 x 4] + [4 x 2] = 20 weights
4 + 2 = 6 biases
26 learnable parameters
Parameter vector: 0
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Simple Neural Network Deeper Neural Network

@ nput Layer () Hidden Layer @ Output Layer

Input : Image input
AILNQ’[ e Conv | : Convolutional layer
L & . ;
3 § rgw s § s - § Pool E Max-pooling layer
= = = 2 ||z 2 >
P FC : Fully-connected layer Y . 29
= e R T EE How deep is “deep learning!
~c<_Dl § ~<<_|3 f’i § ~<<_'a ~c<£ Softmax | : Softmax layer
- N w H (&)} (o)} ~
VGGNet
wv
5 ) ) o ) ) o o ) ) ) ) o ) 0 o = " . .
= g % 8_ g g 8_ g g 8_ % g 8_ g % 8_ a2 Ay AL g’ H. Kataoka et al., Featg re evaluat!o.n of deep con\'/olutlona'l
g 7 neural networks for object recognition and detection.” arXiv
E _y . = | Sy Wy Wy = E preprint arXiv:1509.07627.
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Element
Set

Element
Set

Logistic

Regression

[Goodfellow, Bengio, Courville 2016]
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Logistic
Regression




Why Neural Networks?

* Informal Conjecture. For every function f we might want to learn from data, there
exists a “not too large” neural network that can represent f.

* If true, the upshot is that we don’t need to consider any other classes of models in
machine learning when we want to learn a function.
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Linear Algebra and Optimization
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e Tensor is an array of numbers
— Multi-dim: 0d scalar, Id vector, 2d matrix/image, 3d RGB image

e Matrix (dot) product C=AB  Ci; =) A;;By;
k
Ay A

- ||
m || :m..'” ]

A1 M »
p ) n - Must

match

e Dot product of vectors A and B

— (m =p =1 in above notation)

[Goodfellow, Bengio, Courville 2016]
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e [/ norm

v
|l = | ) lzil?
()

e Most popular norm: L2 norm, p—2
e L1 norm, p—1: llh = Z|x,,;\.

e Max norm, infinite p: ||z||- = max |z;|.
T

[Goodfellow, Bengio, Courville 2016]
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Learning = Optimization

Learning a classifier = optimizing over data with respect to parameters.
Given:

* m labeled samples S = (x4, V1), .« (X1, V1n)

« Aloss function to penalize errors (e.g,l(y,y') = (y —y')?)
* Amodel f(w,x) (eg., f(w,x)=wx + 1)

Goal: Minimize | with regard to w: argmin,, .-, l(yi, f(w, xi))

Forward it
through the
network, get
predictions

Back- Update the
mmmme pPropagate the network
errors weights

Sample labeled
data

(batch)
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— Softplus
4 —

. Re L U — Redtifier

 Softplus

|
-4 -2

. Logistic Sigmoid "

1.0 |

0.8 |-

0.6 |-

0.4

0.2

0.0

!
—10

10
[Goodfellow, Bengio, Courville 2016]
2025-02-11
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* Suppose we start with the input x;, x,, ..., X,
* These are the values of the first layer of the network (the input layer)

* Compute the value of neuron k in the next layer
WXy Wy X, +-- W, X, +b where wiy is a weight associated

* Assuming ReLU/Sigmoid as the activation function, neuron k will be set to:
Max(0, wqXq + Wy Xy + ... + Wy X, +by) or
o(Wq X1 + Wy Xy + ... +Wp X, +by)
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Gaiculate the Loss

Hidden layer

Loss = (CorrectAnswer— OutputLayer)?

layer = (1-0.9)°
= 0.01
Output If large,
layer cat

else, not
cat
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Gaiculate the Loss

Hidden layer

Loss = (CorrectAnswer— OutputLayer)?
= (0 — 0.8)?
= 0.64

If large,
cat

else, not
cat
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This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

f(x)

This local minimum performs
poorly and should be avoided.

xr

[Goodfellow, Bengio, Courville 2016]
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20 g 1 T 1
\
15 F N Global minimum at x = 0.
\ Since f/(x) = 0, gradient
1ok \ descent halts here. . |
N /
N /
0.5 | |
~
~
0.0 | s~ JL -~ -
' For x < 0, we have f'(x . For x > 0, we have f'(z) > [0,
so we can decrease [ b so we can decrease [ by
—0.5 | moving rightward. moving leftward. -
—1.0 | —
1..2
15k ! i
— f@) ==
—2.0 | | | | | | |
—-20 —-15 —-1.0 —-0.5 0.0 0.5 1.0 1.5 2.0

[Goodfellow, Bengio, Courville 2016]
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* Recall that Vf(x) is the direction of
greatest increase in the function value

* A greedy optimization algorithm that
iteratively steps in the negative gradient
direction

J(w)

* More formally, let @ be a small step size
(the learning rate).The gradient descent
algorithm iteratively updates the weights:

ve: wtt=w! —al, l(wh)

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
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For gradient descent, we need to compute the gradient of
[(wh) =Y I(yi, f(wt, xi))

* Slow when we have millions of samples!

SGD: At time t:
* pick random subset B with b samples of training set

o update:w;,q =wy—a -V, Y. pl(y, f(Wtxi))
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Minimum Maximum Saddle point

20

10

) 0
—10

—20

—30 | '
30 —20 =10 0 10 20

x1

Poor conditioning:
Ist derivative large in one and small in
another direction

Saddle point — It and 2" derivative vanish

[Goodfellow, Bengio, Courville 2016]
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« Lots of variants address choice of learning rate

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

« See Visualization of Algorithms

« AdaDelta and RMSprop often work well

https://www.ruder.io/optimizing-gradient-descent/#visualizationofalgorithms
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https://www.ruder.io/optimizing-gradient-descent/

Neural network playgrounds

« http://playground.tensorflow.org/

~ Try out simple network configurations on TF Playground

o https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

— Visualize linear and non-linear mappings
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http://playground.tensorflow.org/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

For gradient descent, we need to compute the gradient of

I(w) = B2, 10w = B, Li, f (W, xD)
Challenge: How to compute partial derivatives of huge network!?

Compute gradient of each constituent [ (w?) " ol graent

[J a —_—
by recursively applying chain rule ae\;% Ox
* called the “Backpropagation algorithm” - f —— :
dy 9z

=

oL

-
4 o2 Y gradients

Back propagation illustration from CS231n Lecture 4

Steven Bergner, Zhengjie Miao - CMPT 733 43
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Suppose we have the single training sample x = (0.5,1), y = 0, and the following

network:
Denote z = o(w;x;+w,X,) = a(f)

Let ] = (z — y)?, then by the chain rule:

0l d
G = 2= 5- =2 - I = o - o)x,

dw,
=2z —-y)z(1 —z2)x,
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Suppose we have the single training sample x = (0.5,1), y = 0, and the following

network:
* First we have a forward propagation pass
to calculate the value of z:
¢ 7z =o0(Wx;+wWyX,) =0(2.5) = 0.924
L =20z — y)z(1 — 2)x,~ 0.065, == = 2(z — y)z(1 — Z)x,~ 0.13
3= 2(2 = Y)2(1 = x,% 0.065, 27 = 2(z = )z(1 — D)~ 0.
wi=w; —a-——=1-(0.1)(0.065) = 0.9935
Wh=w, —a == =2 —(0.1)(0.13) = 1.987

6W2 o
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* For a deep neural network, back propagation calculates the
partial derivatives necessary for SGD.

* Do | have to program all of this calculus from scratch?

* NO! This is a major part of what deep learning libraries like
Pytorch and tensorflow implement for you.
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Reduced generalization error without impacting training error



ertor  Learned hypothesis may fit training
data very well, but fail to generalize
to new examples (test data)

* To avoid overfitting, use explicit

test . .
regularization
training
-
underfitting # parameters m{erﬁtling
(high bias) (high variance)

https://www.neuraldesigner.com/images/learning/selection_error.svg
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Unregularized

e Squared L2 encourages small 2
—
weights ©:
e LI encourages sparsity of model _ _\‘\ —
. P —
parameters (weights) IR LN
i B \
L / \ | ‘
1 \ , I ’
\ 4+ / ]/
\ ~L 7/
~ “ 7 regularizer
w1

[Goodfellow, Bengio, Courville 2016]
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Learning curves

0.20

0.10

Loss (negative log-likelihood)
o
o
ot

0.15 H

50

Training set loss
Validation set loss H

100 150
Time (epochs)

200 250

« Early stopping before validation error starts to increase

2025-02-11

[Goodfellow, Bengio, Courville 2016]

Steven Bergner, Zhengjie Miao - CMPT 733




Affine , Elastic
, _ Noise . ,
Distortion Deformation

» Horizontal Random

Hue Shift

flip Translation

[Goodfellow, Bengio, Courville 2016]
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)38

e

=~
A

Invariance property

Easy Data Augmentation

Short Example

Random Swap

| am jogging — | tiger jogging

Random Insertion

| am jogging — | am salad jogging

Random Deletion

| am jogging — | jogging

Random Synonym Replacement

| am jogging = | am running

2025-02-11

Shorten et al., “Text Data Augmentation for Deep Learning.” Journal of Big Data. 8. 10.1186/s40537-021-00492-0.
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o Average multiple models trained on subsets of the data
o First subset: learns top loop, Second subset: bottom loop

Original dataset

@©®

First resampled dataset

®©®>O=>0)

Second resampled dataset Second ensemble member

D@® > (@=>C)

[Goodfellow, Bengio, Courville 2016]

First ensemble member
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(2
Ox6
(&)
o
©x6

« Random sample of
connection weights is set 0
to zero

model each time

o Train different network o e >
) &

Base network

e Learn more robust,
generalizable features

o N

S s T
96
®99°

Fnsemble of subnetworks

[Goodfellow, Bengio, Courville 2016]
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o Shared parameters are trained with
more data

« Improved generalization error due
to increased statistical strength

h(shared

[Goodfellow, Bengio, Courville 2016]
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software for Deep Learning
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o Tensorflow / Keras

« PyTorch

. DL4J

« Caffe (superseded by Caffe2, which is merged into PyTorch)

« And many more

e Most have CPU-only mode but much faster on NVIDIA GPU
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https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

Development strategy

|dentify needs: High accuracy or low accuracy!?

Choose metric

~ Accuracy (% of examples correct), Coverage (% examples processed)
— Precision TP/(TP+FP), Recall TP/(TP+FN)

—  Amount of error in case of regression

Build end-to-end system

— Start from baseline, e.g. initialize with pre-trained network

Refine driven by data
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Pytorch example

https://pytorch.org/tutorials/beginner/basics/intro.html
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Tensors ~Numpy Arrays

Directly from data

Tensors can be created directly from data. The data type is automatically inferred.
data = [[1, 2], [3, 411
x_data = torch.tensor(data)

From a NumPy array

Tensors can be created from NumPy arrays (and vice versa - see Bridge with NumPy).

np_array = np.array(data)
x_np = toxch.frxom_numpy(np_array)

IIIIIII=HiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII=IIIIIII



x_ones = torxrch.ones_like(x_data) # retains the properties of
X_data

print(f£"Ones Tensor: \n {x_ones} \n")

x_rand = torxrch.rand_like(x_data, dtype=toxch.float) # overrides
the datatype of x_data

print(f£"Random Tensor: \n #x_randf# \n")

Out:
Ones Tensor:

tensor([[1, 1],
[1, 11]1)

Random Tensor:
tensor([[0.8823, 0.9150],
[0.3829, 0.9593]])
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We load the FashionMNIST Dataset with the following parameters:

e root isthe path where the train/test data is stored,

e train specifies training or test dataset,

e download=True downloads the data from the internet if it’s not available at root .

* transform and target_transform specify the feature and label transformations

training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensox ()

test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensox ()
Zhengjie Miao - CMPT 733 62
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class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dixr
self.transform = transform
self.target_transform = target_transform

def len_ (self):
return len(self.img_labels)

def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transfoxrm:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
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Dataloader

Preparing your data for training with DataLoaders &

The Dataset retrieves our dataset’s features and labels one sample at a time. While training a model, we typically want to

pass samples in “minibatches”, reshuffle the data at every epoch to reduce model overfitting, and use Python’s
multiprocessing to speed up data retrieval.

Dataloader is an iterable that abstracts this complexity for us in an easy API.

from torch.utils.data import Dataloader

train_dataloader = Dataloader(training_data, batch_size=64, shuffle=True)
test_dataloader = DatalLoader(test_data, batch_size=64, shuffle=True)

Going to try to classify
images of clothing
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We have loaded that dataset into the DatalLoader and can iterate through the dataset as needed. Each iteration below
returns a batch of train_features and train_labels (containing batch_size=64 features and labels respectively).
Because we specified shuffle=True, after we iterate over all batches the data is shuffled (for finer-grained control over
the data loading order, take a look at Samplers).

# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size() #")

print(f"Labels batch shape: ftrain_labels.size()?") In this example, we want to
img = train_features[0].squeeze() classify images, e.g., classify
label = train_labels[0] this as a shirt
plt.imshow(img, cmap="gray")

plt.show()

print(f"Label: flabelf#")

Out:
Feature batch shape: torch.Size([64, 1, 28, 28])

Labels batch shape: torch.Size([64])
Label: 5




Defining a Multilayer Perceptron

class NeuralNetwork(nn.Module): def __ _init__ (self): is Python
def init_ (self): syntax for a constructor
super().__init__(Q)
self.flatten = nn.Flatten() Inherits from po.module
self.linear_relu_stack = nn.Sequential( defined by pytorch
nn.Linear(28%23, 512),

nn.ReLU(), Network architecture.
nn.Lineaxr (512, 512), nn.Linear(input_dim,
nn.ReLU(), output_dim), this model for 28 by
nn.Linear (512, 10), 28 pixel images

Flatten() turns a tensor

def forward(self, x): into a |d-tensory
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

Goes through layers

in order

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html
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To use the model, we pass it the input data. This executes the model’s forward , along with some background operations.
Do not call model.forward() directly!

Calling the model on the input returns a 2-dimensional tensor with dim=0 corresponding to each output of 10 raw

predicted values for each class, and dim=1 corresponding to the individual values of each output. We get the prediction
probabilities by passing it through an instance of the nn.Softmax module.

X = torch.rand(1, 28, 28, device=device)
logits = model (X)

pred_probab = nn.Softmax(dim=1) (logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: 7Fy_pred?{")

Out:

Predicted class: tensor([7], device='cuda:0')




Let’s break down the layers in the FashionMNIST model. To illustrate it, we will take a sample minibatch of 3 images of size
28x28 and see what happens to it as we pass it through the network.

3 gray scale each 28 by

input_image = torch.rand(3,28,28) 28 pixels images
print(input_image.size())

Out:
toreh.Size([3, 28, 281)

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.size())

3 flattened images, each

Out; 28%28 =784 values

torch.Size([3, 784])
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Network Layers

nn.Linear

The linear layer is a module that applies a linear transformation on the input using its stored weights and biases.

layerl = nn.Linear(in_features=28%28, out_features=20)

hiddenl = layerl(flat_image) Out:
print(hiddenl.size()) torch.Size([3, 20])
nn.ReLU

Non-linear activations are what create the complex mappings between the model’s inputs and outputs. They
are applied after linear transformations to introduce nonlinearity, helping neural networks learn a wide

variety of phenomena.

In this model, we use nn.ReLU between our linear layers, but there’s other activations to introduce non-

linearity in your model.

orint(£"Before RelU: shiddeni?\n\n") Before RelLU: tensor([[ 0.4158, -0.0130, -0.1144, 0.3960, 0.1476

hiddenl = nn.RelLU() (hiddenl) After RelLU: tensor([[0.4158, 0.0000, 0.0000, 0.3960, 0.1476, 0.0000,
print(f"After ReLU: /hidden1?")




sequential and Softmax

nn.Sequential is an ordered container of modules. The data is passed through all the modules in the same

order as defined. You can use sequential containers to put together a quick network like seq_modules.

seq_modules = nn.Sequential(
flatten,
layerl,
nn.ReLU(),
nn.Lineaxr (20, 10)
)
input_image = torch.rand(3,28,28)
logits = seq_modules(input_image)

The last linear layer of the neural network returns logits - raw values in [-infty, infty] - which are passed to
the nn.Softmax module. The logits are scaled to values [0, 1] representing the model’s predicted probabilities
for each class. dim parameter indicates the dimension along which the values must sum to 1.

softmax = nn.Softmax(dim=1)
red probab = softmax(logits)




Training with SGD and Back Propagation

loss_£fn = nn.CrossEntropylLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate

Hyperparameters:
epochs = 10 {P P-
for t in range(epochs): earr"ngi‘rateﬁ
pIin‘t(f"EpOCh {t+1}\n ---------------- o —=TE_ e - - - ") #ePOChS’ batCh_SIZe

train_loop(train_dataloadex, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_=£n)

def train_loop(dataloader, model, loss_£fn, optimizer):
size = len(dataloader.dataset)
# Set the model to training mode - iImportant for batch normalization and dropout layers

# Unnecessary in this situation but added for best practices Epoch 1

model.txrain() Somossssosoosooooooosooooooooos

for batch, (X, y) in enumerate(dataloader): loss: 2.298730 [ 64/60000]
# Compute prediction and loss loss: 2.289123 [ 6464/60000]
pred = model (X) loss: .273286 [12864/600@0]

1 =1 f d,
0SS oss_tolpzed, ¥) .249603 [25664/60000]

1229407 [32064/60000]
1227368 [38464/60000]
loss.backward() loss: 2.204261 [44864/60000]

optimizer.step() loss: 2.206193 [51264/60000]
optimizer.zero_grad() loss: 2.166651 [57664/60000]

2
2
2
loss: 2.269406 [19264/60000]
2
2
2

# Backpropagation




Prediction and Testing

def test_loop(dataloader, model, loss_£n):

# Set the model to evaluation mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices

model.eval()

size = len(dataloader.dataset)

num_batches = len(dataloader)

test_loss, correct = 0, 0

# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode

# also serves to reduce unnecessary gradient computations and memory usage for tensors with
requires_grad=True

with torch.no_grad():
for X, y in dataloader:
pred = model (X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(l) == y).type(torch.float).sum().item()

test_loss /= num_batches
correct /= size

print(£f"Test Exrror: \n Accuracy: 7F(100xcorrect) :>0.1f%%, Avg loss: Ftest_loss:>8ff \n")
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o |. Goodfellow, Y. Bengio, A. Courville “Deep Learning” MIT Press 2016 [link]
o Ismini Lourentzou, “Introduction to Deep Learning,” UIUC CS 510

« Brandon Fain, “Everything Data”, Duke CS 216
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http://www.deeplearningbook.org/
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