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CMPT 733

Data Preparation

Instructor Zhengjie Miao

Course website https://coursys.sfu.ca/2025sp-cmpt-733-g1/pages/

Source based on slides by Jiannan Wang

https://coursys.sfu.ca/2024sp-cmpt-733-g1/pages/


Outline

1. Data Preparation Overview

2. Data Preparation Tasks

2025-01-14 Steven Bergner, Zhengjie Miao - CMPT 733 2



https://www.nytimes.com/2014/08/18/technology/for-

big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.anaconda.com/state-of-data-science-2020

2014 2020

Data Preparation Is Still the Bottleneck!!!

3

http://www.nytimes.com/2014/08/18/technology/for-
http://www.anaconda.com/state-of-data-science-2020


2022

Trend: Data Prep about 38% of effort

https://www.anaconda.com/state-of-data-science-2022
4

https://www.anaconda.com/state-of-data-science-2022


Trend in 2023
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Trend in 2023
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Why Is Data Preparation Hard?
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Collection Cleaning Integration Analysis

How much time is spent on preparation?

1. Too many small problems (e.g., standardize date, dedup address, etc)

2. Humans have different levels of expertise (in data science and programming)

3. Domain specific (finance, social science, healthcare, economics, etc.)



Data come from many sources and in a 
variety of formats
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Structured Semi-structured Raw/Unstructured

CSV JSON Text

TSV XML Images

Excel HTML Audio

Dataframe Python Pickle Video

SQL MongoDB

… …

Source Data
(Raw Text, HTML, 
Tweeter, Tiktok,…)



Data are noisy

• Data entry errors

• Measurement errors

• Extraction errors

• Format conversion errors

• Non-uniform collection/sampling

• …
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Human-in-the-loop Data Preparation

• Three Directions

• Spreadsheet GUI

• Workflow GUI

• Notebook GUI
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Spreadsheet GUI
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Workflow GUI
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Notebook GUI
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Which Direction To Go?
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Data Prep Market was valued at USD 4.02 Billion in 2024 

and is projected to reach USD 16.12 Billion by 2031, 

growing at a CAGR of 19% from 2024 to 2031
Source: https://www.verifiedmarketresearch.com/product/data-prep-market/

“
”

Three Directions

• Spreadsheet GUI

• Workflow GUI

• Notebook GUI

Targeted at non-programmers

Targeted at data scientists

http://www.verifiedmarketresearch.com/product/data-prep-market/


Data Preparation Tasks
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Data Collection

◦ Where to collect

◦ How to collect

Data Cleaning

Data Integration



Where to Collect?
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Internal Data

◦ DataWarehouse (Tabular Data)

◦ System Logs (Text Files)

◦ Documents (Word, Excel, PDF)

◦ Multimedia Data (Video, Audio, Image)

[Aside: AWS Data Lake on S3]

https://docs.aws.amazon.com/whitepapers/latest/building-data-lakes/data-lake-foundation.html


Where to Collect?
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External Data

◦ Web Pages

◦ Web APIs (https://github.com/public-apis/public-apis)

◦ Open Data (data.vancouver.ca, www.data.gov)

◦ Knowledge Graph (Wikidata, Freebase)

https://github.com/public-apis/public-apis
https://data.vancouver.ca/
https://www.data.gov/


Data Classification
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Structured Semi-structured Unstructured

Data



Challenges
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• Data Discovery

◦ How to find related data?

• Data Privacy

◦ How to protect user privacy?

• Security

◦ How to avoid a data breach?

• Data masking

• Differential privacy

• Domain knowledge

• Information retrieval skills

• Follow data access rules

• Encrypt highly confidential data



Getting Data

• From CSV Files 

• From JSON Files 

• From the Web 

• From HDFS 

• From Databases 

• From S3

• From Web APIs
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Load Data From CSV Files
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CSV is a file format for storing tabular data



Load Data From JSON Files

Steven Bergner, Zhengjie Miao - CMPT 7332025-01-14 22

JSON is a file format for storing nested data (array, dict)



Web Scraping

• Open web pages
◦ urllib2 (https://docs.python.org/2/library/urllib2.html)

◦ request (http://docs.python-requests.org/en/master/)

• Parse web pages

◦ Beautiful Soup (https://www.crummy.com/software/BeautifulSoup/)

◦ lxml (http://lxml.de/)

• Putting everything together

◦ Scrapy (https://scrapy.org/)
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https://docs.python.org/2/library/urllib2.html
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/)
https://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/)
http://lxml.de/
http://lxml.de/)
https://scrapy.org/


Before you scrape
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Check to see if CSV, JSON, or XML version of an HTML page are

available – better to use those

Check to see if there is a Python library that provides structured

access (e.g., dataprep)

Check that you have permission to scrape

From “Deb Nolan. Web Scraping & XML/Xpath”

https://drive.google.com/open?id=1274pH3aG79GWoct2aYi4fkFDdZqvdCb0


If you do scrape
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•Be careful to not to overburden the site with your requests

•Test code on small requests

•Save the results of each request so you don’t have to repeat the

request unnecessarily

• CAPTCHA

From “Deb Nolan. Web Scraping & XML/Xpath”

https://drive.google.com/open?id=1274pH3aG79GWoct2aYi4fkFDdZqvdCb0


Example Application Scenario: Experiential 
Hotel Search

Hotel that is less than $300 per night, has very clean 
room, and has a nice view of the city in Vancouver

Disclaimer: this is an imaginary 

application, not about how the real-

world examples are built



Where can we get those subjective 
attributes?

Experience!
Clean rooms

Nice view

Good location
Reviews



Experiential Search

Experience!
DB

DB

DB

Clean rooms

Nice view

Good location
Reviews



Preparing data for the search application

• Web scraping

• Information extraction (perhaps will cover in future lectures)

• Data cleaning 

• Data integration

• Data annotation



Outline

• Data Collection

• Data Cleaning

◦ Dirty Data Problems

◦ Data Cleaning Tools

◦ Example: Outlier Detection

• Data Integration
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Data Cleaning

https://www.press-citizen.com/story/news/2023/03/17/iowa-city-crime-
map-glitch-mistakenlhy-shows-20-homicides-in-2023/69959003007/
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Dirty Data Problems

1) Parsing text into fields (separator issues)

2) Missing required field (e.g. no SIN)

3) Different representations (iphone 2 vs iphone 2nd generation)

4) Fields too long (get truncated)

5) Formatting issues – especially dates

6) Primary key violation (two people with the same SIN)

7) Redundant Records (exact match or other)

8) Outliers (age = 120)

• Adapted from Stanford Data Integration Course

2025-01-14 Steven Bergner, Zhengjie Miao - CMPT 733 32



Data Cleaning --- Error Detection

Typos Duplicated values Outliers Missing values Constraint violation

Name City
Star 

Rating

Minimum 

Price
Zip

t1

Sheraton Vancouver - 

Wall Centre
Burnaby $260 V6Z 2R9

t2 TheBurrardHotel Vancouver $200 V6Z 1Y7

t3 Element Metrotown Burnaby $3000 V5H 2A7

t4 Embarc Hotel Vancouver $180 V6Z 2R9
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Another Annoying Example
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Transactions

10 Dollars, credit

5Euros - debit

30 Pesos, credit

1 dollar, credit

7,00 euros, debit

credit 20 dollars

21 pesos

debit Fifty pesos and
10 euros

Amount Currency Mode

10 Dollars credit

5 Euros debit

30 Pesos credit

1 Dollars credit

7 Euros debit

20 Dollars credit

21 Pesos ?

50 Pesos debit

10 Euros debit

From Brandon Fain (Duke)



Data Cleaning Tools
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Python
◦ Missing Data (Pandas)

◦ Deduplication (Dedup)

OpenRefine

◦ Open-source Software

(http://openrefine.org)

◦ OpenRefine as a Service (RefinePro)

Data Wrangler

◦ The Stanford/Berkeley Wrangler 

research project

◦ Commercialized (Trifacta)

Not Many Tools.
That’s why we are building DataPrep

(http://dataprep.ai)

http://pandas.pydata.org/pandas-docs/version/0.17.1/missing_data.html
https://github.com/datamade/dedupe
http://openrefine.org/
http://refinepro.com/
https://www.trifacta.com/


Outlier Detection
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The ages of employees in a US company

1 20 21 21 22 26 33 35 36 37 39 42 45 47 54 57 61 62



Outlier Detection
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The ages of employees in a US company

1 20 21 21 22 26 33 35 36 37 39 42 45 47 54 57 61 62 400



Outlier Detection
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The ages of employees in a US company

1 20 21 21 22 26 33 35 36 37 39 42 45 47 54 57 61 62 400

Median =

MAD =



Data Preparation Tasks

• Data Collection

• Data Cleaning

• Data Integration

◦ Data Integration Problem

◦ Three Steps (Schema Matching, Entity Resolution, Data Fusion)

◦ Example: Entity Resolution
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Experiential Search

Experience!
DB

DB

DB

Clean rooms

Nice view

Good location
Reviews



Name Address Tel

A1 Sheraton Vancouver - Wall Centre 1000 Burrard Street , Vancouver (604) 331-1000

A2 The Burrard Hotel 1100 Burrard Street, Vancouver (604) 681-2331

A3 Delta Hotels BCC 4331 Dominion Street, Burnaby (604) 453-0750

Zip Hotel Phone

B1 V4K 0B2 Delta Hotels by Marriott Vancouver Delta +1 604-382-8222

B2 V6Z 1Y7 The Burrard +1 800-663-0366

B3 V5G 1C7 Delta Hotels by Marriott Burnaby Conference Centre +1 604-453-0750

Data Integration???



Data Integration: Three Steps
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Schema Mapping
◦ Creating a global schema

◦ Mapping local schemas to the global schema

Entity Resolution
◦ You will learn this in detail later

Data Fusion
◦ Resolving conflicts based on some confidence scores

Want to know more?

◦ Anhai Doan,AlonY. Halevy, Zachary Ives. Principles of Data Integration.
Morgan Kaufmann Publishers, 2012.

http://research.cs.wisc.edu/dibook/


Schema Mapping

• Approaches:

• View & logic-based: mapping between sources and the global schema

• Learning to match:

• Classify the semantic relation of attribute pairs

• Cluster attributes

• Universal schema

• Fill in each cell by latent probabilities instead of one-to-one column mapping

• Allow overlap, subset/superset, etc.

• With the rise of LMs

• Simply concatenating all values could work for certain tasks
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Name Address Phone Zip

H1 Sheraton Vancouver - Wall Centre 1000 Burrard Street , Vancouver (604) 331-1000

H2 The Burrard Hotel 1100 Burrard Street, Vancouver +1 800-663-0366 V6Z 1Y7

H3 Delta Hotels BCC 4331 Dominion Street, Burnaby +1 604-453-0750 V5G 1C7

H4 Delta Hotels by Marriott Vancouver Delta +1 604-382-8222 V4K 0B2

Name Address Tel

A1 Sheraton Vancouver - Wall Centre 1000 Burrard Street , Vancouver (604) 331-1000

A2 The Burrard Hotel 1100 Burrard Street, Vancouver (604) 681-2331

A3 Delta Hotels BCC 4331 Dominion Street, Burnaby (604) 453-0750

Zip Hotel Phone

B1 V4K 0B2 Delta Hotels by Marriott Vancouver Delta +1 604-382-8222

B2 V6Z 1Y7 The Burrard +1 800-663-0366

B3 V5G 1C7 Delta Hotels by Marriott Burnaby Conference Centre +1 604-453-0750

Integrated Data



Another Example of Entity Resolution
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Output of Entity Resolution

• Also referred to as record linkage and entity matching

• Identify records in a (or more) dataset(s) representing the same entity

A1 A2

B2B1

A3

B3

A1

A2

B2 B1

A3

B3



Entity Resolution Techniques
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Similarity-based

◦ Similarity Function

◦Threshold (e.g., 0.8)

Jaccard(r1,r2) =0.9≥0.8 Matching 

Jaccard(r4,r8) =0.1 < 0.8 Non-matching

Learning-based
◦Represent a pair of records as a feature vector



Similarity-based
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Suppose the similarity function is Jaccard. 

Problem Definition

Thenaïve solution needs𝒏𝟐 comparisons



Filtering-and-Verification
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Step 1. Filtering/blocking
◦Removing obviously dissimilar pairs

Step 2.Verification/pairwise matching
◦Computing Jaccard similarity only for the survived pairs



Filtering/blocking

◦ Removing obviously dissimilar pairs

A1 A2

B2B1

A3

B3

A1

A2

B2 B1

A3

B3



Verification/Pairwise Matching

◦ Computing similarity only for the survived pairs

A1 A2

B2B1

A3

B3

A1

A2

B2 B1

A3

B3



How Does Filtering Work?
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What are “obviously dissimilar pairs”?
◦ Two records are obviously dissimilar if they do not share any word.

◦ In this case, their Jaccard similarity is zero, thus they will not be returned as a 
result and can be safely filtered.

How can we efficiently return the record pairs that share at least one

word?

◦ To help you understand the solution, let’s first consider a simplified version of the 
problem, which assumes that each record only contains one word



A simplified version
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Apple

Apple

Banana

Orange

Banana

r1 

r2

r3

r4

r5

Output: (r1, r2), (r3, r5)

Doesit require𝒏𝟐 comparisons?

Suppose each record has only one word. Write an 

SQL query to do the filtering.

SELECT T1.id, T2.id
FROM Table T1, Table T2
WHERE T1.word = T2.word and T1.id < T2.id



A general case
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Suppose each record can have multiple words.

Apple, Orange

Apple

Banana

Orange,Apple

Banana

r1 

r2

r3

r4 

r5

Flatten

Apple

Orange

Apple

Banana

Orange

Apple

Banana

r1 

r1

r2 

r
3

r4

r4 

r5

1. This new table canbethought of as 
the invertedindexof the old table.

2. Runthe previous SQLonthis newtable
and remove redundant pairs.



Not satisfied with efficiency?
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Exploring stronger filter conditions
◦ Filter the record pairs that share zero token

◦ Filter the record pairs that share one token

◦….

◦ Filter the record pairs that share k tokens

Challenges
◦ How to develop efficient filter algorithms for these stronger 

conditions?

Jiannan Wang, Guoliang Li, JianhuaFeng.
CanWe Beat The Prefix Filtering? An Adaptive Framework for Similarity Join and Search. SIGMOD
2012:85-96.

https://scholar.google.ca/scholar?cluster=3738306890680168220&hl=en&as_sdt=0,5


Not satisfied with result quality?
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TF-IDF
◦ Use weighted Jaccard:

Crowdsourcing
◦ Ask human to decide whether two records are

matching or not

Learning-based
◦ Model entity resolution as a classification

problem
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Human-in-the-loop: 

Crowdsourcing

CMPT884: Human-in-the-loop Data Management (SFU,Fall2016) 
https://sfu-db.github.io/cmpt884-fall16/



The Wisdom of Crowds
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What does it mean?
◦Two heads are better than one

Some famous examples



Amazon Mechanical Turk
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500K+workers*

* https://requester.mturk.com/tour



Crowdsourcing may not work 
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What if your data is confidential?
◦ E.g., Medical Data, Customer Data

Internal Crowdsourcing Platform



Crowdsourcing may not work 
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What if your data is so big?
◦ E.g., Label 10 million images



Crowdsourcing may not work 

2025-01-14 Steven Bergner, Zhengjie Miao - CMPT 733 64

What if your data is so big?
◦ E.g., Label 10 million images

Human-in-the-loop: 

Active Learning



Active Learning
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Supervised Learning ActiveLearning



Workflow
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Supervised Learning

Data
Labeled 

Data Data

ActiveLearning

ModelModel

Labeled 
Data



Query Strategy

• Which data points should be labeled?
◦ Uncertain Sampling

◦ Query-By-Committee

◦ Expected Error Reduction

◦ Expected Model Change

◦ Variance Reduction

◦ Density-Weighted Methods

• Settles, Burr. "Active learning literature survey." University of Wisconsin, Madison 52.55-66 (2010): 11.
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Uncertain Sampling
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Logistic Regression
◦predict_proba(X)

98%

Pick up most uncertain datapoints to label

98%

52%



Crowdsourcing may not work 
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What if your data is so big?
◦ E.g., Label 10 million images

Human-in-the-loop: fully 

automated with LLM?



Perhaps not there yet
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✔good zero-shot and few-shot learners for 
many NLP tasks

✔much cheaper
❌performance varies across tasks, labels, 

and instances

❌time consuming

❌not scalable

❌costly

70



Human-LLM Collaborative Annotation Framework
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Wang et al. "Human-LLM collaborative annotation through effective verification of LLM labels."  CHI 2024



Summary
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Data Collection
◦ Where to collect, How to Collect

Data Cleaning
◦ Dirty Data Problems, Data-cleaning tools

Data Integration
◦ Schema Mapping, Entity Resolution, Data Fusion

Entity Resolution
◦ Similarity-based, Crowdsourcing,Active Learning, LLM

Preppin' Data
Aweekly challenge to help you learn to prepare data and use
TableauPrep
https://preppindata.blogspot.com/
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