CMPT 733 – Big Data Programming II Deep Learning II

Instructor Steven Bergner

Course website https://coursys.sfu.ca/2025sp-cmpt-733-g1/pages/

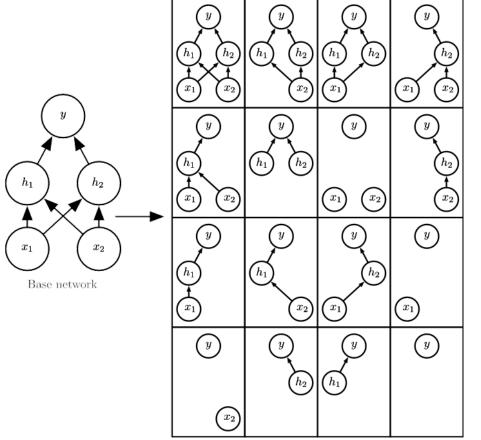
Overview

- Recap: Overfitting remedies
- Deep learning for sequences
- Natural language processing, e.g.
 - Sentiment analysis
 - Word embeddings
- Visualization for Deep Learning

Strategies against Overfitting (short recap)

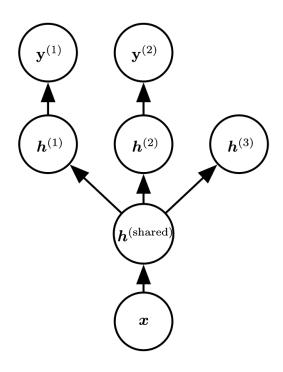
Dropout

- Random sample of connection weights is set to zero
- Train different network model each time
- Learn more robust, generalizable features



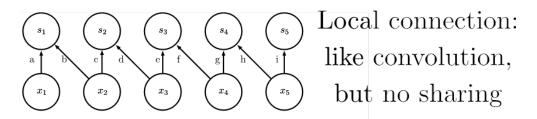
Ensemble of subnetworks

Multitask learning

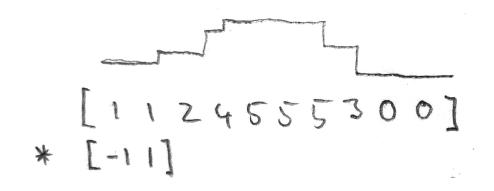


- Shared parameters are trained with more data
- Improved generalization error due to increased statistical strength
- Missing components of y are masked from the loss function

Types of connectivity



Convolution calculation illustrated



Choosing architecture family

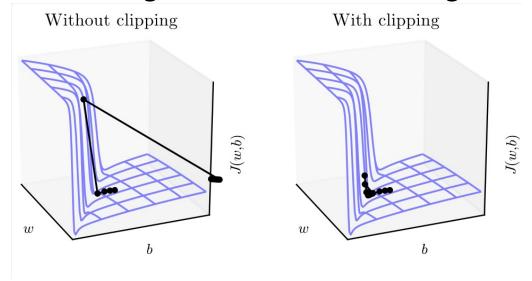
- No structure → fully connected
- Spatial structure → convolutional
- Sequential structure → recurrent

Optimization Algorithm

- Lots of variants address choice of learning rate
- See <u>Visualization of Algorithms</u>
- AdaDelta and RMSprop often work well

Gradient Clipping

- Add learning rate time gradient to update parameters
- Believe direction of gradient, but not its magnitude



Development strategy

- Identify needs: High accuracy or low accuracy?
- Choose metric
 - Accuracy (% of examples correct), Coverage (% examples processed)
 - Precision TP/(TP+FP), Recall TP/(TP+FN)
 - Amount of error in case of regression
- Build end-to-end system
 - Start from baseline, e.g. initialize with pre-trained network
- Refine driven by data

Software for Deep Learning

Current Frameworks

- Tensorflow / Keras
- PyTorch
- DL4J
- Caffe (superseded by Caffe2, which is merged into PyTorch)
- And many more
- Most have CPU-only mode but much faster on NVIDIA GPU

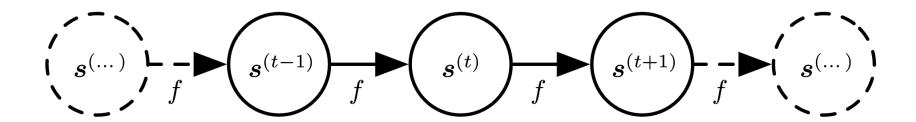
Recap: Choosing architecture family

- No structure → fully connected
- Spatial structure → convolutional
 - Adjacency or order of inputs has meaning
- Sequential structure → recurrent

Sequence Modeling with Recurrent Nets

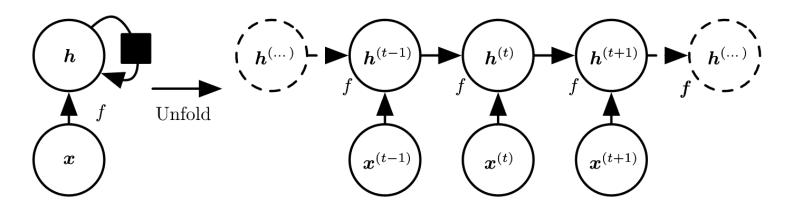
Classical Dynamical Systems

- Recurrent network models a dynamical system that is updated in discrete steps over time
- Function f takes input from time t to output at time t+1
- Rules persist across time



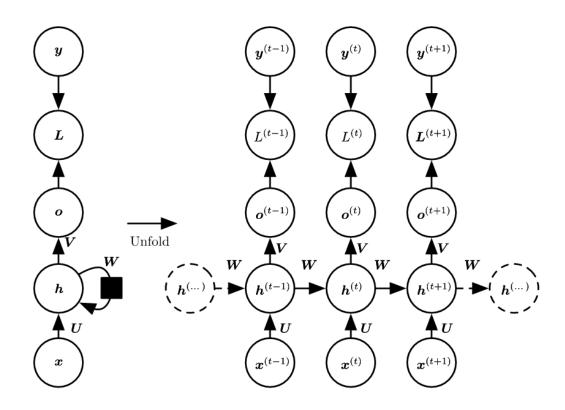
Unfolding Computation Graphs

- Recurrent graph can be unfolded, where hidden state h is influencing itself
- Backprop through time is just backprop on unfolded graph



Recurrent Hidden Units

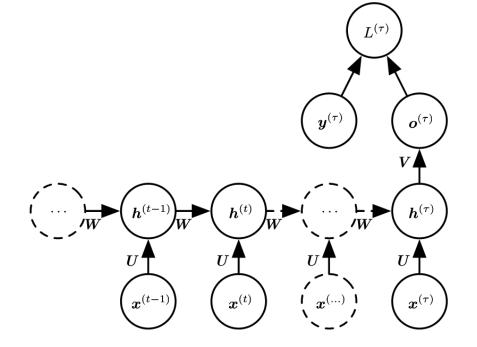
 Can have more than one layer



Sequence Input, Single Output

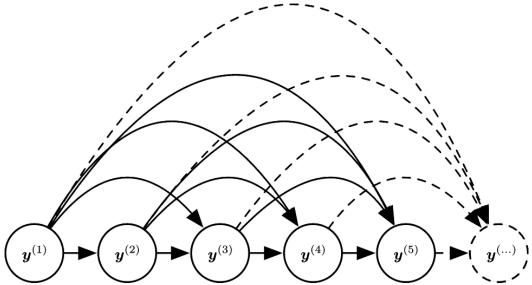
Example

Sentiment analysis of text



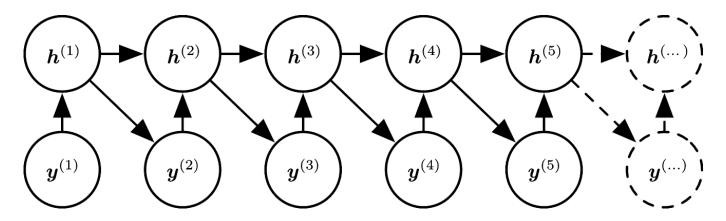
Fully Connected Graphical Model

 Too many dependencies among variables, if each has its own set of parameters



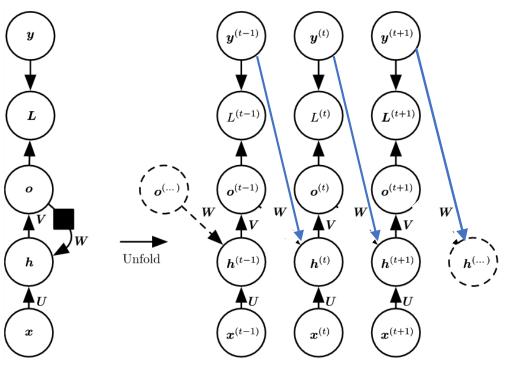
RNN Graphical Model

- Organize variables according to time with single update rule
- Finite set of relationships may extend to infinite sequences
- h acts as "memory state" summarizing relevant history



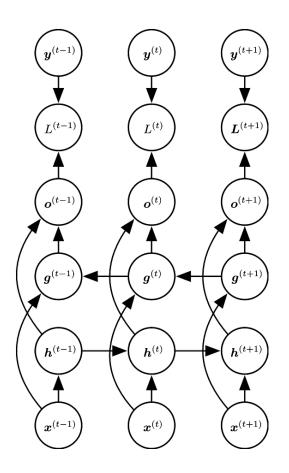
Recurrence only through output

- Avoid backprop through time
- Mitigation: Teacher forcing
- Use actual or expected output from the training dataset at current time y(t) as input o(t) to the next time step, rather than generated output
- Backprop stops when it reaches y(t-1) via o(t-1)



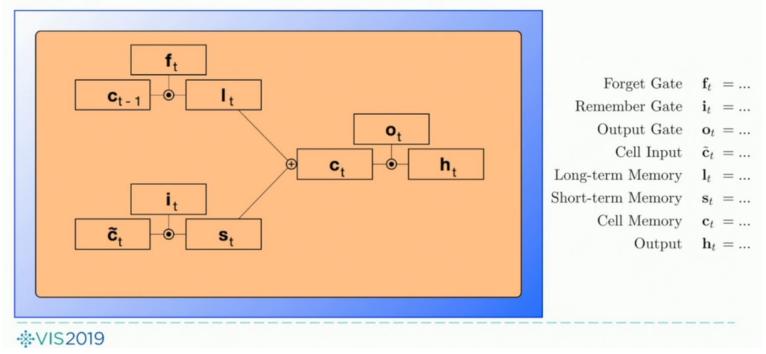
Bidirectional RNN

 Later information may be used to reassess previous observations



LSTMs

• Use addition over time instead of multiplication



[Sawatzky, Bergner, Popowich, 2019]

Further Architectures

- Transformers
- Deep Reinforcement Learning

Excellent explanation of Attention

Karpathy's NanoGPT

https://www.youtube.com/watch?v=kCc8FmEb1nY&t=1s

NanoGPT implementation

https://github.com/karpathy/nanoGPT

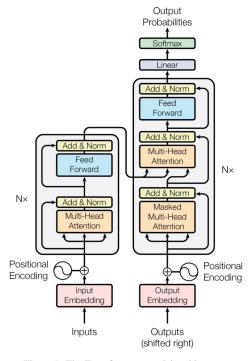


Figure 1: The Transformer - model architecture.

Generative language models are passing exams

Exam	GPT-4	GPT-4 (no vision)	GPT-3.5
Uniform Bar Exam (MBE+MEE+MPT)	298 / 400 (~90th)	298 / 400 (~90th)	213 / 400 (~10th)
LSAT	163 (~88th)	161 (~83rd)	149 (~40th)
SAT Evidence-Based Reading & Writing	710 / 800 (~93rd)	710 / 800 (~93rd)	670 / 800 (~87th)
SAT Math	700 / 800 (~89th)	690 / 800 (~89th)	590 / 800 (~70th)
Graduate Record Examination (GRE) Quantitative	163 / 170 (~80th)	157 / 170 (~62nd)	147 / 170 (~25th)
Graduate Record Examination (GRE) Verbal	169 / 170 (~99th)	165 / 170 (~96th)	154 / 170 (~63rd)
Graduate Record Examination (GRE) Writing	4 / 6 (~54th)	4 / 6 (~54th)	4 / 6 (~54th)
USABO Semifinal Exam 2020	87 / 150 (99th - 100th)	87 / 150 (99th - 100th)	43 / 150 (31st - 33rd)
USNCO Local Section Exam 2022	36 / 60	38 / 60	24 / 60
Medical Knowledge Self-Assessment Program	75 %	75 %	53 %
Codeforces Rating	392 (below 5th)	392 (below 5th)	260 (below 5th)
AP Art History	5 (86th - 100th)	5 (86th - 100th)	5 (86th - 100th)
AP Biology	5 (85th - 100th)	5 (85th - 100th)	4 (62nd - 85th)

Visualization for DL

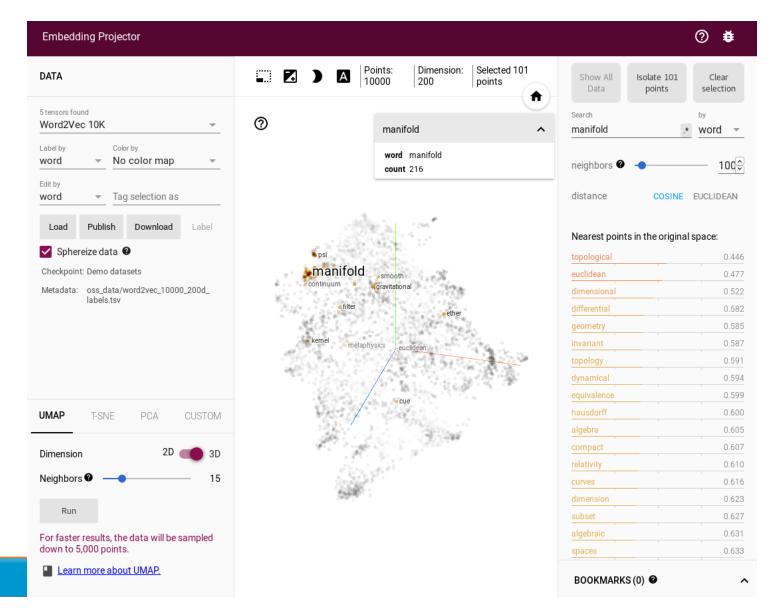
- Tensorboard: Visualizing Learning
- How to use t-SNE efficiently
- <u>UMap</u>

Model visualization

- LSTM-Vis: http://lstm.seas.harvard.edu/client/index.html
- Video demo
- Building blocks of interpretability

U-MAP

 Embed highdimensional points in screen coordinates



Sources

- I. Goodfellow, Y. Bengio, A. Courville "Deep Learning" MIT Press 2016 [link]
- Zhang et al. "Dive into Deep Learning" [link]