
CMPT 384: Assignment #5
Anders Miltner

miltner@cs.sfu.ca

Due Mar 25

Introduction
In this assignment, we will be coding up a realistic programming language interpreter. This language will
support a variety of features like higher-order functions, sum types, and subtyping.

This language has types of the form:

t ::= top Top
| t1 ∗ t2 Pair
| t1 → t2 Arrow
| ‘C1 t1| . . . |‘Cn tn Sum

The Sum with 0 elements (represented as Sum []) is also referred to as “bot” and can be written as such.
There is subtyping in these types. Namely, subtyping is described as follows:
• t is a subtype of top, for all t
• bot is a subtype of t, for all t
• if t′1 is a subtype of t1 and t2 is a subtype of t′2, then t1 → t2 is a subtype of t′1 → t′2 (careful about

the primes, this one is a little tricky)
• ‘C1 t1| . . . |‘Cn tn is a subtype of ‘C ′

1 t′1| . . . |‘C ′
n t′m if, for all ‘Ci, there exists some ‘C ′

j such that
‘Ci = ‘C ′

j and ti is a subtype of t′j
This language has expressions of the form:

e ::= ()
| (e1, e2)
| fst e
| snd e
| λ(x : t).e
| e1 e2
| x
| ‘Ce
| match e with | ‘C1 (x1 : t1) → e1 | . . . | ‘Cn (xn : tn) → en

Programming Your Interpreter
The semantics of code in this language is semantics : Expression.t -> semantics_response, where
semantics_response can either be a stuck expression or a value expression.

A program is a value if:
• The expression is ()
• The expression is (e1, e2) and both e1 and e2 are values
• The expression is λ(x : t).e

1

mailto:miltner@cs.sfu.ca


• The expression is ‘C e and e is a value
A program is stuck if there is nothing it can small step to (defined in a second), and it is not a value.
The semantics of an expression e is an expression e′ where small steps to e′ in some number of steps,

and such e′ is either a value or stuck.
The small-step semantics (→) of our language is provided below:
• if e1 → e′1 then (e1, e2) → (e′1, e2)

• if e1 is a value and e2 → e′2 then (e1, e2) → (e1, e
′
2)

• if e → e′ then fst e → fst e′

• if e → e′ then snd e → snd e′

• if (e1, e2) is a value then fst (e1, e2) → e1

• if (e1, e2) is a value then snd (e1, e2) → e2

• if e1 → e′1 then e1e2 → e′1e2

• if e1 is a value and e2 → e′2 then e1e2 → e1e
′
2

• if e2 is a value then (λ(x : t).e)e2 → e[e2/x] where e[e2/x] is e with every instance of x replaced by
e2

• if e → e′ then ‘C e → ‘C e′

• if e is a value, then (match ‘C e with | ‘C1 (x1 : t1) → e1 | . . . | ‘Cn (xn : tn) → en) → ei[e/xi],
where ‘C = ‘Ci and ei[e/xi] is ei with every instance of xi replaced by e

Type-Checking Your Interpreter
Now youwill type check your code. The type of type checking is typecheck : Expression.t -> Type.t option.

I will use Γ to denote a mapping from variables to types of variables (Γ : string → type option). I
will use Γ ⊢ e : t to denote that typechecking e under context Γ results in some output type, t. (In other
words, say you have a helper function,
typecheck_helper : (string -> Type.t option) -> Expression.t -> Type.t option
Γ ⊢ e : t would mean that typecheck_helper gamma e returns Some t).

• Γ ⊢ x : Γ(x)

• Γ ⊢ () : top

• If Γ ⊢ e : t1 ∗ t2 then Γ ⊢ fst e : t1

• If Γ ⊢ e : t1 ∗ t2 then Γ ⊢ snd e : t2

• If (Γ ∪ (x 7→ t1)) ⊢ e : t2 then Γ ⊢ λ(x : t1).e : t1 → t2

• Γ ⊢ e2 : t1 → t2 and Γ ⊢ e1 : t′1 and t′1 is a subtype of t1 then Γ ⊢ e2 e1 : t2

• If Γ ⊢ e : t then Γ ⊢ ‘C e : ‘C t

• If Γ ⊢ e : bot then Γ ⊢ match e with : bot

• If Γ ⊢ e : t and t is a subtype of ‘C1 t1| . . . |‘Cn tn and ∀i between 1 and n, (Γ ∪ (xi 7→ ti)) ⊢ ei : t
′
i

then Γ ⊢ match e with | ‘C1 (x1 : t1) → e1 | . . . | ‘Cn (xn : tn) → en : t′ where t′ is the unique type
such that t′i is a subtype of t′ for all i, and for any other type t′′ such that t′i is a subtype of t′′, then
t′ is a subtype of t′′. (In other words, t′ the smallest supertype of all t′i)

2


