CMPT 384: Assignment #5

Anders Miltner
miltner@cs.sfu.ca

Due Mar 25

Introduction

In this assignment, we will be coding up a realistic programming language interpreter. This language will
support a variety of features like higher-order functions, sum types, and subtyping.
This language has types of the form:

t u= top Top
|ty %t Pair
| t1—t Arrow

| ‘Cl t1| AN |‘On tn Sum

The Sum with 0 elements (represented as Sum []) is also referred to as “bot” and can be written as such.
There is subtyping in these types. Namely, subtyping is described as follows:

* tis a subtype of top, for all ¢
* bot is a subtype of ¢, for all ¢

* if ¢} is a subtype of ¢; and ¢, is a subtype of ¢}, then ¢; — ¢, is a subtype of t| — ¢/, (careful about
the primes, this one is a little tricky)

* ‘Cy t1]...['Cy ty is @ subtype of ‘Cy #1]...|'Cy, t,, if, for all ‘C;, there exists some ‘C} such that
‘C; = ‘C} and t; is a subtype of ¢

This language has expressions of the form:

e u= O

(e1,€2)

fste

snd e

Az t).e

€1 €2

T

‘Ce

match e with | ‘Cy (x1:t1) = er | ... | ‘Cp (0 1 tn) = ey

Programming Your Interpreter

The semantics of code in this language is semantics : Expression.t -> semantics_response, where
semantics_response can either be a stuck expression or a value expression.
A program is a value if:

* The expression is ()
* The expression is (e1, e3) and both e; and e, are values

* The expression is A(z : t).e

mailto:miltner@cs.sfu.ca

* The expression is ‘C e and e is a value

A program is stuck if there is nothing it can small step to (defined in a second), and it is not a value.

The semantics of an expression e is an expression ¢’ where small steps to ¢’ in some number of steps,
and such €’ is either a value or stuck.

The small-step semantics (—) of our language is provided below:

* if ey — €} then (e1,e3) — (€], e2)

* if ey is a value and e; — €, then (e1,e2) — (e1,€5)
e if e — ¢ then fst e — fst €

e if e — €’ then snd e — snd €’

* if (e1,eq) is a value then fst (el,e2) — e;

* if (e1,eq) is a value then snd (el,e2) — ey

* ife; — € thenejes — €les

* if e; is a value and e; — €}, then ejes — e1€)

* if e5 is a value then (\(x : t).e)ea — e[ea/x] where eles/x] is e with every instance of « replaced by
e

e ife ve then‘Ce— ‘Ce¢

* if e is a value, then (match ‘C e with | ‘Cy (x1 1 t1) = e | ... | ‘Ch (Tn : tn) = €n) — eile/x],
where ‘C' = ‘C; and e;[e/z;] is e; with every instance of x; replaced by e

Type-Checking Your Interpreter

Now you will type check your code. The type of type checking is typecheck : Expression.t -> Type.t option.
I will use T' to denote a mapping from variables to types of variables (I" : string — type option). I

will use T' - e : ¢ to denote that typechecking e under context I" results in some output type, ¢. (In other

words, say you have a helper function,

typecheck_helper : (string -> Type.t option) -> Expression.t -> Type.t option

I' e : t would mean that typecheck_helper gamma e returns Some t).

e I'kua:T'(x)

e T'H():top

e IfT’Fe:t;xtathenT' k- fste:t;

e IfT'Fe:tyxtythenT' snde: ta

s IfTU(x—t1))Fe:tathenT F Az :ty).e:ty — to

* I'keg:t;y >toand 'k e; :] and ¢] is a subtype of ¢; thenT'F es €7 : o
e IfTke:tthenlkH‘Ce:‘Ct

* IfT'F e: bot then T' - match e with : bot

e IfT'+e:tandtis asubtype of ‘Cy ¢1|...|'C,, t, and Vi between 1 and n, (T U (z; — t;)) F e; : t}
then I' - match e with | ‘Cy (z1 :t1) = e1 | ... | ‘Cp (zp : tn) — ep : t' where ¢/ is the unique type
such that ¢; is a subtype of ¢’ for all 4, and for any other type ¢” such that ¢} is a subtype of ¢, then
t’ is a subtype of ¢”. (In other words, ¢’ the smallest supertype of all ¢})

