
CMPT 135 Pointers & Memory Management Page 1

Today’s Plan

Today’s topics:

ì From last time:
ì Property & LLM Testing

ì Pointers & Memory Management

ì Memory of a Running C++ Program
Last time:

ì Testing

Upcoming:

ì A1 ongoing

ì Q1 next week

CMPT 135 Pointers & Memory Management Page 2

Pointers and Memory Management

ì Managing memory is a major topic in C++

ì While call-stack memory is automatically managed, free store memory is
manually managed by the programmer
ì Many other programming languages automatically manage memory using a special

program called a garbage collector that runs while your program runs

ì The garbage collector automatically de-allocates any unused memory

ì Garbage collectors can result in slightly slower programs, or programs with short
pauses, which might not be acceptable in real-time applications

ì In C++, to use free store memory you must use pointers …

CMPT 135 Pointers & Memory Management Page 3

Memory of a running C++ program

456 457 458 459 460 1291 1292 1293 1294

.

You can think of the
memory of a running C++
program as a long array of

bytes.

But this array probably
doesn’t start at address 0:
it is placed in a free region
of memory called the heap

by the operating system.

This starting address is
probably different

every time you run the
program. 456 is an

arbitrary value

When you run a program, the
operating system (OS) gives

your program a chunk of
memory it can use. Accessing
memory out of these bounds
usually makes the OS kill your

program

CMPT 135 Pointers & Memory Management Page 4

Memory of a running C++
program

456

'a'

457 458 459 460 1291 1292 1293 1294

.

char c = 'a';

cout << c; // prints value of c:

cout << &c; // prints address of c:

c

& is the address-of
operator: &x returns the

address of variable x

value of c: a
address of c:
0x7ffdf3f9a7d7

 value of c: a
address of c:
0x7fff62a536c7

 value of c: a
address of c:
0x7fff6ba0fa47

The 0x at the start
means hexadecimal

(base 16). Each
digit/letter is 4 bits.

3 separate runs
of the code;

different
address for c

each time

CMPT 135 Pointers & Memory Management Page 5

Memory of a running C++ program

456

'a'

457 458 459 460 1291 1292 1293 1294

.

char c = 'a';

cout << c; // prints value of c: 'a'

cout << &c; // prints address of c: 457

char x = c; // put a copy of c’s value in x

 px = &x; // store the address of x in px

c

Question: what is the
type of an address?

CMPT 135 Pointers & Memory Management Page 6

Memory of a running C++ program

456

'a'

457 458 459

'a'

460 1291 1292

460

1293 1294

.

char c = 'a';

cout << c; // prints value of c: 'a'

cout << &c; // prints address of c: 457

char x = c; // put a copy of c’s value in x

char* px = &x; // store address of x in px

c x px

cout << px; // print value of px:

cout << *px; // print value at
 // address contained
 // in px:

*px is called a
pointer de-

reference: it is the
value in the address

px stores

Address 460
now has two
names: x and

*px

CMPT 135 Pointers & Memory Management Page 7

Memory of a running C++ program

'a' 'a'

char c = 'a';

cout << c; // prints value of c: 'a'

cout << &c; // prints address of c: 457

char x = c; // put a copy of c’s value in x

char* px = &x; // store address of x in px

c x px

cout << px; // print value of px: 460

cout << *px; // print value at
 // address contained
 // in px: 'a'

Usually we just
draw the

variables we care
about with a

specific address …

CMPT 135 Pointers & Memory Management Page 8

Memory of a running C++ program

8

a

Challenge
Write a program that makes

memory look like this.

b

c

5 n
int

CMPT 135 Pointers & Memory Management Page 9

Memory of a running C++ program

a

Challenge
Change it to look

like this

b

c

5 n
int

int n = 5;
int* a = &n;
int* b = &n;
int* c = &n;

int*

int*

int*

d

CMPT 135 Pointers & Memory Management Page 10

Memory of a running C++ program

a

Challenge
Modify the

program to make
memory look like

this.

b

c

5 n
int

int n = 5;
int* a = &n;
int* b = &n;
int* c = &n;
int** d = &c;

e
d

int*

int*

int* int**

CMPT 135 Pointers & Memory Management Page 11

Memory of a running C++ program

a

b

c

5 n
int

int n = 5;
int* a = &n;
int* b = &n;
int* c = &n;
int** d = &c;
int*** e = &d;

e

Different names
(aliases) for the int

that n refers to:
n

*a
*b
*c

**d
***e

d

int*

int*

int* int** int***

CMPT 135 Pointers & Memory Management Page 12

The null Pointer

int* ip = nullptr;
string* sp = nullptr;
double* dp = nullptr;

ip

sp

dp

The “ground” symbol
from electronics
represents a null

pointer.

ì nullptr is a special pointer value that
means the pointer is not pointing to a
valid memory location

ì In earlier versions of C++, 0 is used
instead of nullptr. But use nullptr
instead: it’s clearer.

ì De-referencing a nullptr is always an
error, e.g. *ip is always an invalid
expression
ì Must always check the pointer before de-

referencing it!

CMPT 135 Pointers & Memory Management Page 13

Some general
rules

If x is a variable, then &x is
the address where the value

of x is stored

If T is a C++ type, then T* is
the type of a pointer to a

value of type T

If p points to a value, then *p
evaluates to the value being

pointed to

If p == nullptr, then
evaluating *p is always an

error

5x
int

313782

&x == 313782

valx
T

9047

9047px
T*

2055

3900p
T*

4473

valX

T

3900

p *p is an error!

