
CMPT 135 Verifying & Testing Code Page 1

Today’s Plan

Today’s topics:

ì From last time:
ì How Function Calls Work with the Stack

ì Verifying Code

ì Inspection vs. Testing

ì Unit & System Testing

Last time:

ì Function Calls

ì Stacks

Upcoming:

ì A1 posted!

ì Labs this week

CMPT 135 Verifying & Testing Code Page 2

How do civil engineers ensure
their constructions “work”?

They do many things!

ì Hire experts

ì Follow safety standards

ì Use good materials and techniques

ì Inspect and test as they go

ì …

CMPT 135 Verifying & Testing Code Page 3

How do you know if a program is correct?

Two basic techniques:

1. Inspection: read the source code to make sure there are
no errors, and that all cases are handled
ì Many software companies (e.g. Google, Microsoft) require at

least one other person to read any code you submit

2. Testing: run the program on some sample inputs and
make sure it does the right thing
ì Continuous and automated testing is the general standard that

most good software companies follow, or at least aim for

Occasionally, it may be possible
to mathematically prove a

program is correct. A
mathematical proof can be
thought of as a detailed and

systematic inspection. In
practice, it is rarely used since

the proofs are usually more
complex than the code.

CMPT 135 Verifying & Testing Code Page 4

How do you know if a program is correct?

void f(int& n)
{
 n++;
}

Is this
function
correct?

CMPT 135 Verifying & Testing Code Page 5

How do you know if a program is correct?

// adds 1 to n
void f(int& n)
{
 n++;
}

// adds 2 to n
void g(int& n)
{
 n++;
}

Are these
functions
correct?

Important!
A function is correct
(error-free) if it does
what we want it to

do. So, to test it, we
must specify what
the function does.

CMPT 135 Verifying & Testing Code Page 6

How do you know if a program is correct?

// adds 1 to n
void f(int& n)
{
 n++;
}

// adds 2 to n
void g(int& n)
{
 n++;
}

Important!
A function is correct
(error-free) if it does
what we want it to

do. So, to test it, we
must specify what
the function does.

In C++, specifications are
usually put in comments. Or if

it’s obvious, in the function
name.

CMPT 135 Verifying & Testing Code Page 7

How do you know if a program is correct?

Suppose I give you a function with this header:

 void f(const string& v);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?

Bad answers:
• It’s true because I say so.
• It’s so simple that it

couldn’t be wrong.
• I got it from the web.
• I got it from

CoPilot/ChatGPT.
• Someone told me how I

did it is correct.

CMPT 135 Verifying & Testing Code Page 8

How do you know if a program is correct?

Suppose I give you a function with this header:

 void f(const string& v);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?

Better Answers:

ì Ask to see how f is
implemented

ì Call it on a few different
strings and check what it
returns

CMPT 135 Verifying & Testing Code Page 9

How do you know if a program is correct?

Inspection

ì Done manually by the programmer

ì Works well for small/simple programs

ì Especially useful when done by
someone other than the original
programmer

ì Can be tedious/complicated for bigger
programs

Testing

ì Can be done automatically or
manually

ì Usually requires making (input,
output) pairs

ì Comes in many varieties …

9

CMPT 135 Verifying & Testing Code Page 10

Varieties of Testing

ì Unit testing: test one part (“unit”) of a
program, e.g. a single function
ì Whitebox testing: make test cases based on

the implementation

ì Blackbox testing: make test cases based on
the specification only, without seeing an
implementation

ì System testing
ì Testing the entire system

Can start as soon as you
write one function.

Test-driven
development (TDD) is
when you write unit

tests at the same time
as you write your code.

Needs the system to
be in a working state.

Waiting until a system
is mostly working is a

very bad idea!

CMPT 135 Verifying & Testing Code Page 11

System testing on a bridge: load testing

Load testing on the Pelješac Bridge in
2022
ì 40 tonnes of trucks drove across the

bridge
ì Engineers measured to ensure the

bridge deformed as expected
ì Obviously, the bridge had to be

nearly finished to do this test
ì In software, we often do load

testing for websites or servers to
make sure they can handle a lot of
requests

CMPT 135 Verifying & Testing Code Page 12

Varieties of Testing

ì Unit testing: test one part (“unit”) of a
program, e.g. a single function
ì Whitebox testing: make test cases based on

the implementation

ì Blackbox testing: make test cases
based on the specification only,
without seeing an implementation

ì System testing
ì Testing the entire system

Advantages
• Can write test cases before

you write the code.
• Same test cases can work if

implementation changes but
header stays the same.

Disadvantages
• Can’t test implementation-

specific details.

Advantages
• Can check that every line

of code is run by a test.
• Also allows you to do some

inspection.

Disadvantages
• Test cases need to

added/removed if
implementation changes

CMPT 135 Verifying & Testing Code Page 13

Testing: Challenge 1

Suppose I give you a function with this header:

 void f(const string& s);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?

Challenge 1
Write a version of

function f that is not
completely correct, but
does work correctly for

the three example
cases.

CMPT 135 Verifying & Testing Code Page 14

Testing: Challenge 1

Suppose I give you a function with this header:

 void f(const string& s);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?

CMPT 135 Verifying & Testing Code Page 15

Testing: Challenge 2

Suppose I give you a function with this header:

 void f(const string& s);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?

Challenge 2
Write a version of

function f that is not
completely correct, but

fails on exactly one
input.

CMPT 135 Verifying & Testing Code Page 16

Testing: Challenge 2

Suppose I give you a function with this header:

 void f(const string& s);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?

CMPT 135 Verifying & Testing Code Page 17

Testing: Challenge 3

Suppose I give you a function with this header:

 void f(const string& s);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?

Challenge 3
Write a version of

function f that for any
given input string may,
or may not, return the

correct answer.

CMPT 135 Verifying & Testing Code Page 18

Testing: Challenge 3

Suppose I give you a function with this header:

 void f(const string& s);

I claim f(s) returns s duplicated, e.g.

 f("cat") returns "catcat"
 f("bird") returns "birdbird"
 f("a house") returns "a housea house"
 etc.

How can I prove to you that my claim about f is true?
rand() returns a

random int from 0
to about 2 billion
(for 32-bit ints)

