
CMPT 135 Review of C++ Page 1

Today’s Plan

Today’s topics:

ì From last time:
ì Function Calls: Pass by Value/Reference

ì C++ Demos

ì Stacks

ì How Function Calls Work with the Stack

Last time:

ì C++ Review

Upcoming:

ì A1 posted!

ì Labs next week

CMPT 135 Review of C++ Page 2

Demo: Counting Long Lines

Let’s look at a program line_check.cpp that counts and prints the
number of lines in a text file that have more than 100 characters.

CMPT 135 Review of C++ Page 3

Demo: Counting Words

wc is the Linux “word count” utility:
> wc austenPride.txt

 13427 124580 704158 austenPride.txt

Let’s look at a possible implementation for this.

CMPT 135 Review of C++ Page 4

How function calls work

ì Knowing how function calls work in C++ is helpful

ì It lets you better understand program flow, memory management, and
local/global variables

ì It also helps in understanding recursive functions

CMPT 135 Review of C++ Page 5

How function calls work: Stacks
an empty stack A stack is a simple data structure

that supports these operations:

• is_empty() returns true if the stack is empty,
and false otherwise

• push x puts x on the top of the stack
• pop removes the top element of the

stack
• peek returns a copy of the top element

of the stack.
push 5

5 5 5 5

push 2 push 4 pop
2 2

4
2

5

pop

bottom of stack bottom of stack bottom of stack bottom of stack bottom of stack

pushing onto a full
stack causes an

error: stack
overflow

popping/peeking an
empty stack causes

an error (stack
underflow)

CMPT 135 Review of C++ Page 6

How function calls work

ì For a running C++ program, C++ designates part of
memory as the programs call stack

ì Every time a function is called, the function, its
parameters, and return address are pushed onto
the call stack
ì Everything that gets pushed is refer to as a stack frame
ì Local variables are also stored in the functions stack

frame

ì Every time a function exits, the stack frame on top
of the stack is popped and the return-value of the
function call is put there (conceptually)
ì Local variables are deleted by this pop

int g(int a) {
 int n = a + 2;
 return 3*n;
}

int n = 5;
g(n); // push onto call stack
cout << "done!";

previous function calls previous function calls

bottom of stack bottom of stack

g(n)

push

CMPT 135 Review of C++ Page 7

How function calls work

ì For a running C++ program, C++ designates part of
memory as the programs call stack

ì Every time a function is called, the function, its
parameters, and return address are pushed onto
the call stack
ì Everything that gets pushed is refer to as a stack frame
ì Local variables are also stored in the functions stack

frame

ì Every time a function exits, the stack frame on top
of the stack is popped and the return-value of the
function call is put there (conceptually)
ì Local variables are deleted by this pop

int g(int a) {
 int n = a + 2;
 return 3*n;
}

int n = 5;
g(n); // push onto call stack
cout << "done!";

previous function calls previous function calls

bottom of stack bottom of stack

}

pop
a=5
n=7

CMPT 135 Review of C++ Page 8

How function calls work

ì For a running C++ program, C++ designates part of
memory as the programs call stack

ì Every time a function is called, the function, its
parameters, and return address are pushed onto
the call stack
ì Everything that gets pushed is refer to as a stack frame
ì Local variables are also stored in the functions stack

frame

ì Every time a function exits, the stack frame on top
of the stack is popped and the return-value of the
function call is put there (conceptually)
ì Local variables are deleted by this pop

bottom of stack bottom of stack

main()

push

int main() {
 int i = 0;
 cout << f();
}

int f() {
 int i = 7;
 i++;
 return i;
}

main
i=0

CMPT 135 Review of C++ Page 9

How function calls work

ì For a running C++ program, C++ designates part of
memory as the programs call stack

ì Every time a function is called, the function, its
parameters, and return address are pushed onto
the call stack
ì Everything that gets pushed is refer to as a stack frame
ì Local variables are also stored in the functions stack

frame

ì Every time a function exits, the stack frame on top
of the stack is popped and the return-value of the
function call is put there (conceptually)
ì Local variables are deleted by this pop

bottom of stack bottom of stack

f()

push

int main() {
 int i = 0;
 cout << f();
}

int f() {
 int i = 7;
 i++;
 return i;
}

main
i=0

f
i=7

main
i=0

CMPT 135 Review of C++ Page 10

How function calls work

ì For a running C++ program, C++ designates part of
memory as the programs call stack

ì Every time a function is called, the function, its
parameters, and return address are pushed onto
the call stack
ì Everything that gets pushed is refer to as a stack frame
ì Local variables are also stored in the functions stack

frame

ì Every time a function exits, the stack frame on top
of the stack is popped and the return-value of the
function call is put there (conceptually)
ì Local variables are deleted by this pop

bottom of stack

int main() {
 int i = 0;
 cout << f();
}

int f() {
 int i = 7;
 i++;
 return i;
}

main
i=0

f
i=8

CMPT 135 Review of C++ Page 11

How function calls work

ì For a running C++ program, C++ designates part of
memory as the programs call stack

ì Every time a function is called, the function, its
parameters, and return address are pushed onto
the call stack
ì Everything that gets pushed is refer to as a stack frame
ì Local variables are also stored in the functions stack

frame

ì Every time a function exits, the stack frame on top
of the stack is popped and the return-value of the
function call is put there (conceptually)
ì Local variables are deleted by this pop

bottom of stack bottom of stack

f()

pop

int main() {
 int i = 0;
 cout << f();
}

int f() {
 int i = 7;
 i++;
 return i;
}

main
i=0

f
i=8

main
i=0

8

CMPT 135 Review of C++ Page 12

How function calls work

ì For a running C++ program, C++ designates part of
memory as the programs call stack

ì Every time a function is called, the function, its
parameters, and return address are pushed onto
the call stack
ì Everything that gets pushed is refer to as a stack frame
ì Local variables are also stored in the functions stack

frame

ì Every time a function exits, the stack frame on top
of the stack is popped and the return-value of the
function call is put there (conceptually)
ì Local variables are deleted by this pop

bottom of stack bottom of stack

main()

pop

int main() {
 int i = 0;
 cout << f();
}

int f() {
 int i = 7;
 i++;
 return i;
}

main
i=0

8

8 gets
printed

main() is finished:
program is done!

CMPT 135 Review of C++ Page 13

How function calls work

ì Stacks are easy to implement efficiently
ì use an array and an index variable to keep track of the top of the stack

ì Function calls are generally quite efficient
ì C++ compilers can use function inlining to replace short functions calls with the

contents of their body, thus avoiding the overhead of pushing/popping the call stack

ì It’s possible to call so many functions without returning that you get a stack
overflow error
ì Your program crashes because it’s out of memory

ì This is a significant issue in systems with limited memory, e.g. embedded systems

ì Works with recursive functions, e.g. functions that call themselves
13

