
CMPT 135 Review of C++ Page 1

Today’s Plan

Today’s topics:

ì Getting Started with C++

ì C++ Review
ì Basic Types

ì Conditional Statements: if and switch

ì Loops: while, for, for-each

ì Function Calls: Pass by Value/Reference

Last time:

ì Course outline

Upcoming:

ì Labs next
week

CMPT 135 Review of C++ Page 2

Getting Started with C++

ì Your assignments will be compiled, run, and marked
using g++ on Ubuntu Linux

ì So, you should use the same environment for writing
your programs
ì On Windows, installing Windows Subsystem for Linux (WSL)

is the easiest way to get Linux
ì On a Mac, you can probably use the built-in terminal

ì We recommend you VS Code for this course
ì Free, popular, high-quality programming editor
ì Supports C++ and lots of other languages
ì Works well with WSL

CMPT 135 Review of C++ Page 3

C++ Version

ì We’ll be using C++17

ì Later version of C++ are not yet fully supported by all compilers

ì If you use features beyond C++17, your programs might not compile when
marked!

ì We’ll provide exact compiler options to make sure you use the correct
version
ì in a makefile

CMPT 135 Review of C++ Page 4

Review of C++

ì Sample code to review
ì Hello, world

ì Basic types

ì If statements and switch statements

ì Loops: while, for, for-each

4

CMPT 135 Introduction to Computer Programming II Page 5

// hello_world.cpp

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello World!\n";
 return 0;
} 5

CMPT 135 Review of C++ Page 6

int type (whole numbers)

6

int a;

int b = 5;

int b2(5);

int b3{5};

int c = 5.5;

auto d = 5;

For 32-bit ints:

min int = -2147483648
max int = 2147483647

CMPT 135 Review of C++ Page 7

double type (decimal numbers)

7

double e;

double f = 5;

double g = 5.5;

double g2(5.5);

double g2{5.5};

auto h = 5.5;

CMPT 135 Review of C++ Page 8

char type (single character)

8

char i; // unknown initial value
char j = 'a';
char k = 97; // ASCII value of 'a'
auto l = 'a';
cout << j;
cout << k;
cout << int(j);
cout << int(k);
cout << int('a');
cout << char(97);

CMPT 135 Review of C++ Page 9

unsigned int type (non-negative ints)

9

unsigned int m;
unsigned int n = 5;
unsigned int p = -5;
auto q = 5u;

cout << p; // prints 4294967291
cout << q;

For 32-bit ints:

min unsigned int = 0
max unsigned int = 4294967295

CMPT 135 Review of C++ Page 10

unsigned int type (non-negative ints)

typedef unsigned int uint;

uint m;
uint n = 5;
uint p = -5;

typedef lets you give any
C++ type another name.

This lets you make names
that are shorter or more

descriptive.

typedef does not create a
new type: it just gives
another name to an

existing type.

CMPT 135 Review of C++ Page 11

C++ string type (sequence of chars)

string r;
string s = "Hello World!";
string t("Hello World!");
string u{"Hello World!"};
string v(5, '!');

cout << "r = \"" << r << "\"";

cout << "v = \"" << v << "\"";

Important!
string is the name of the
standard C++ string type,
and it’s what you should use
in this course

A C-style string is an array of
characters ending with a
'\0'. They are used as strings
in C, but in C++ we will
usually only use them for
string literals like "hello
world!”.

CMPT 135 Review of C++ Page 12

IF vs. SWITCH Conditionals

char d = 'm';
if (d == 'm' || d == 'M')
{
 cout << "Monday";
}
else if (d == 'w')
{
 cout << "Wednesday";
}
else if (d == 'f')
{
 cout << "Friday";
}
else
{
 cout << "Invalid day";
}

char d = 'm';
switch (d)
{
 case 'm':
 case 'M':
 cout << "Monday";
 break;
 case 'w':
 cout << "Wednesday";
 break;
 case 'f':
 cout << "Friday";
 break;
 default:
 cout << "Invalid day: '";
 break;
 }

CMPT 135 Review of C++ Page 13

WHILE vs. FOR LOOP

int total = 0;
int i = 0;
while (i < 100)
{
 total += i;
 i++;
}

cout << total; // 4950

int total = 0;

for(int i = 0; i < 100; i++)
{
 total += i;
}
cout << total; // 4950

CMPT 135 Review of C++ Page 14

Infinite Loop using WHILE and FOR

CMPT 135 Introduction to Computer Programming II Page 15

vector<int> v;
for (int i = 0; i < 100; i++) {
 v.push_back(i);
}

int total = 0;
for(int i = 0; i < v.size(); i++)
{
 total += v[i];
}
cout << total;

for loop
int total = 0;
for(int n : v)
{
 total += n;
}
cout << total;

for-each loop

Make sure to #include
<vector> and using

namespace std;

15

CMPT 135 Review of C++ Page 16

Function Calls: Pass by Value

int count(string s) {
 int num = 0;
 for(char c : s) {
 if (c == ' ') num++;
 }
 return num;
}

Makes a new copy of
the passed-in string s.
Slow, and uses extra

memory.

CMPT 135 Review of C++ Page 17

Function Calls: Pass by Reference

Does not make a copy
of s. Works on the
actual passed-in

string. Fast!

int count(string& s) {
 int num = 0;
 for(char c : s) {
 if (c == ' ') num++;
 }
 return num;
}

CMPT 135 Review of C++ Page 18

Pass-by-reference vs. Pass-by-constant-reference

Does not make a copy
of s. Works on the
actual passed-in

string. Fast!

int count(string& s) {
 int num = 0;
 for(char c : s) {
 if (c == ' ') num++;
 }
 return num;
}

int count(const string& s) {
 int n = 0;
 for(char c : s) {
 if (c == ' ') n++;
 }
 return n;
}

As fast as pass-by-
reference, but guarantees

to compiler that count
does not modify s.

CMPT 135 Review of C++ Page 19

Functions: Local Variables

int count(const string& s) {
 int n = 0;
 for(char c : s) {
 if (c == ' ') n++;
 }

 return n;
}

Local variables exist only
when the function is active.

They are automatically
created when the function

is called, and then
automatically deleted when

the function ends.

CMPT 135 Review of C++ Page 20

Return values are returned (passed) by value

int count(const string& s) {
 int n = 0;
 for(char c : s) {
 if (c == ' ') n++;
 }
 return n;
}

When n is returned, a
copy is returned. So
be careful returning

large values: they
could use a lot of time

and memory.

The returned int must
be a copy because n is
a local variable that’s
automatically deleted

when the function
ends.

