
Three desirable properties for private 
messaging

• Repudiability: I can deny that a message is written by me; no 
one can prove to a third party that it is written by me
• How can this co-exist with message authenticity?

• Forward secrecy: If I leak my keys, conversations before the 
leakage time are still secure
• This was achieved with short-term encryption keys

• Break-in recovery: If I leak my keys, conversation after the 
leakage time are still secure
• This cannot be achieved with the above setup; it is broken 

by the signature scheme bootstrapping process
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Double Ratchet Algorithm

• Used in the Signal Protocol
• WhatsApp, Telegram, Facebook Messenger, Skype

• Based on the Off-the-Record Messaging algorithm
• Achieves repudiation, forward secrecy, and break-in recovery
• Based on two sets of ratchets:

• The Diffie-Hellman ratchet generates ratchet keys
• The symmetric key ratchet generates message keys 

based on ratchet keys
• A ratchet key can be used to generate several message 

keys from the same sender
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Double Ratchet Algorithm
Diffie-Hellman Ratchet

• Consider DH:
• Generator g
• Alice’s private key is x, public key is gx

• Bob’s private key is y, public key is gy

• Shared secret becomes gxy

• In the Diffie-Hellman Ratchet, a sequence of shared secrets 
is generated

• A new shared secret is generated whenever someone who 
has just received a message wants to send a message

• Ratchet keys will be generated from those shared secrets
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Diffie-Hellman Ratchet
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Double Ratchet Algorithm
Diffie-Hellman Ratchet

• We now have key update without the need of long-term keys
• Only the first exchange is signed with identity keys

• What happens if a private key is compromised later?
• Then exactly 2 ratchet keys are compromised
• If it is B5, then they would be gA5B5, gA6B5 (if Alice talks first)

• Forward secrecy: Conversations using previous keys are not 
compromised

• Break-in recovery: Conversations using future keys are not 
compromised
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Repudiability
• Consider a SKE setup:

• Bob can check the MAC to ensure that whomever sent this 
must have the secret key

• Bob knows he himself did not write M, so Alice did
• But Bob cannot prove Alice wrote M to anyone else, since Bob 

could’ve written M
• The important thing is to avoid signatures
• Diffie-Hellman Ratchet achieves repudiability by using only a 

secret key to send messages and HMACs

BobAlice
EncK(M), Hash(EncK(M), K)K K
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A remaining weakness
• In practice, message can be lost or re-ordered
• This means we cannot keep advancing ratchet keys – we need 

to store old keys for an indefinite time
• To solve this, we use a second ratchet, known as the 

symmetric key ratchet
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Double Ratchet Algorithm
Symmetric Key Ratchet

Based on Key Derivation Function Chains:

KDF

Root key
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Usable key

Usable key

KDF Usable key

Input

Input

Input

The point is to create 
usable temporary keys 
that can potentially be 
leaked without 
compromising other 
keys.
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e.g. h(Input1 || Input2) = 
(Usable key || Output1)



Double Ratchet Algorithm
Symmetric Key Ratchet

First, the ratchet keys produces sending/receiving keys:

KDF

Root key

KDF

Sending key

Receiving key

KDF Sending key

Ratchet key 1 (Alice’s side) First ratchet 
key is Alice’s first sending 
key; Bob’s would start 
with a receiving keyRatchet key 2

Ratchet key 3
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Double Ratchet Algorithm
Symmetric Key Ratchet

Each sending/receiving key starts its own symmetric key KDF 
chain:

KDF

Sending key

KDF

Message key

Message key

KDF Message key

Constant

Each message key is 
used for only one 
message.

Constant

Constant
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Message keys can now 
be stored (and 
potentially leaked) 
without affecting 
security.



Double Ratchet Algorithm

• KDF chains generates a series of keys, each key based on the 
previous root key and an input

• The DH ratchet generates and procedurally updates ratchet 
keys
• A new chain is started whenever one side switches from 

receiving to sending
• The ratchet keys are used as input to the DH KDF chain to 

generate sending and receiving chain keys
• Chain keys are used as the bootstrapping root key for 

symmetric key DF chains to generate message keys

Review
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Double Ratchet Algorithm
• Stronger property than repudiability: forgeability

• Anyone could have created the message, not just Alice 
and Bob 

• Can we also achieve forgeability?
• Possibly, by releasing MAC keys (not decryption keys)

• This does not work for group messaging
• The property that an HMAC indirectly proves identity does 

not follow for group messaging
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