
Three desirable properties for private
messaging

• Repudiability: I can deny that a message is written by me; no
one can prove to a third party that it is written by me
• How can this co-exist with message authenticity?

• Forward secrecy: If I leak my keys, conversations before the
leakage time are still secure
• This was achieved with short-term encryption keys

• Break-in recovery: If I leak my keys, conversation after the
leakage time are still secure
• This cannot be achieved with the above setup; it is broken

by the signature scheme bootstrapping process

1

Double Ratchet Algorithm

• Used in the Signal Protocol
• WhatsApp, Telegram, Facebook Messenger, Skype

• Based on the Off-the-Record Messaging algorithm
• Achieves repudiation, forward secrecy, and break-in recovery
• Based on two sets of ratchets:

• The Diffie-Hellman ratchet generates ratchet keys
• The symmetric key ratchet generates message keys

based on ratchet keys
• A ratchet key can be used to generate several message

keys from the same sender

2

Double Ratchet Algorithm
Diffie-Hellman Ratchet

• Consider DH:
• Generator g
• Alice’s private key is x, public key is gx

• Bob’s private key is y, public key is gy

• Shared secret becomes gxy

• In the Diffie-Hellman Ratchet, a sequence of shared secrets
is generated

• A new shared secret is generated whenever someone who
has just received a message wants to send a message

• Ratchet keys will be generated from those shared secrets
3

Diffie-Hellman Ratchet

gA1B1

gA1 gB1A1 B1

Private Public PrivatePublicRatchet key

gA1B1

Ratchet key

gA2A2

gA2B1 gA2B1

gB2 B2

gA2B2 gA2B2

gA3A3

gA3B2 gA3B2

Alice Bob

4

Double Ratchet Algorithm
Diffie-Hellman Ratchet

• We now have key update without the need of long-term keys
• Only the first exchange is signed with identity keys

• What happens if a private key is compromised later?
• Then exactly 2 ratchet keys are compromised
• If it is B5, then they would be gA5B5, gA6B5 (if Alice talks first)

• Forward secrecy: Conversations using previous keys are not
compromised

• Break-in recovery: Conversations using future keys are not
compromised

5

Repudiability
• Consider a SKE setup:

• Bob can check the MAC to ensure that whomever sent this
must have the secret key

• Bob knows he himself did not write M, so Alice did
• But Bob cannot prove Alice wrote M to anyone else, since Bob

could’ve written M
• The important thing is to avoid signatures
• Diffie-Hellman Ratchet achieves repudiability by using only a

secret key to send messages and HMACs

BobAlice
EncK(M), Hash(EncK(M), K)K K

6

A remaining weakness
• In practice, message can be lost or re-ordered
• This means we cannot keep advancing ratchet keys – we need

to store old keys for an indefinite time
• To solve this, we use a second ratchet, known as the

symmetric key ratchet

7

Double Ratchet Algorithm
Symmetric Key Ratchet

Based on Key Derivation Function Chains:

KDF

Root key

KDF

Usable key

Usable key

KDF Usable key

Input

Input

Input

The point is to create
usable temporary keys
that can potentially be
leaked without
compromising other
keys.

8

e.g. h(Input1 || Input2) =
(Usable key || Output1)

Double Ratchet Algorithm
Symmetric Key Ratchet

First, the ratchet keys produces sending/receiving keys:

KDF

Root key

KDF

Sending key

Receiving key

KDF Sending key

Ratchet key 1 (Alice’s side) First ratchet
key is Alice’s first sending
key; Bob’s would start
with a receiving keyRatchet key 2

Ratchet key 3
9

Double Ratchet Algorithm
Symmetric Key Ratchet

Each sending/receiving key starts its own symmetric key KDF
chain:

KDF

Sending key

KDF

Message key

Message key

KDF Message key

Constant

Each message key is
used for only one
message.

Constant

Constant
10

Message keys can now
be stored (and
potentially leaked)
without affecting
security.

Double Ratchet Algorithm

• KDF chains generates a series of keys, each key based on the
previous root key and an input

• The DH ratchet generates and procedurally updates ratchet
keys
• A new chain is started whenever one side switches from

receiving to sending
• The ratchet keys are used as input to the DH KDF chain to

generate sending and receiving chain keys
• Chain keys are used as the bootstrapping root key for

symmetric key DF chains to generate message keys

Review

11

Double Ratchet Algorithm
• Stronger property than repudiability: forgeability

• Anyone could have created the message, not just Alice
and Bob

• Can we also achieve forgeability?
• Possibly, by releasing MAC keys (not decryption keys)

• This does not work for group messaging
• The property that an HMAC indirectly proves identity does

not follow for group messaging

12

	Slide 1: Three desirable properties for private messaging
	Slide 2: Double Ratchet Algorithm
	Slide 3: Double Ratchet Algorithm
	Slide 4
	Slide 5: Double Ratchet Algorithm
	Slide 6: Repudiability
	Slide 7: A remaining weakness
	Slide 8: Double Ratchet Algorithm
	Slide 9: Double Ratchet Algorithm
	Slide 10: Double Ratchet Algorithm
	Slide 11: Double Ratchet Algorithm
	Slide 12: Double Ratchet Algorithm

