Blockchain

<u>Problem:</u> We want a distributed transaction ledger so that **no single entity has control over the ledger**

- Global transaction ledger:
 - Contains all transactions between all participants
 - Distributed to all participants (=> open)
 - Can be sent by anyone, and therefore requires some verifiability
- Solution: Use cryptographic techniques so that participants can verify the ledger

Global Transaction Ledger

Sender	Receiver	Bitcoin amount	
Alice	Bob	0.31	
Carol	Bob	1.21	Block 1
Alice	Bob	0.4	V
Bob	Alice	0.532	Block 2
Carol	Bob	0.01	
Bob	Carol	0.01	Block 4
			DIOCK 4
	•••		V

- Everyone agrees on the same ledger
 - Update each other on new transactions
- Divided into blocks, 1 block every 10 minutes
- Can someone lie?
- e.g. "Alice: Block 1 has no transactions!"

Global Transaction Ledger

Three types of threats against the ledger's integrity: <u>Add</u>: People refuse to add a real transaction to the ledger <u>Modify</u>: Someone modifies a transaction in the ledger

• This is easiest to fix: Simply have the participants sign all transactions, and include the signature in the ledger

Delete: Someone removes a transaction from the ledger

 To prevent those, we use a proof of work to safeguard blocks

Two types of participants in a blockchain system:

- Users: Signs their transactions and announces them
- Miners: Helps add the transactions to the ledger by generating the proof of work (technically, miners can also be users)

Blockchain

Transactions in this block

Proof of work, based on hash and very hard to compute

Attacker claim: actually, B₁ should be B₁'

- The attacker needs to change B_1 , which changes B_2 , which...
- The attacker needs to generate 3 new proofs of work, because the network accepts the longest chain
- Trying to generate those essentially triggers a race: other miners are generating P₅, P₆, P₇...

Proof of Work

• Challenge: Given C, how can we find P such that

h(C||P) ends with 32 zero bits?

- Cryptographic hash: Best way = Brute force (one success per 2³² hashes on average)
- C is the Content and P is the Proof of Work: If Alice sends C to Miner and Miner sends P back to Alice, Miner has "proven" that they did the work of many hashes

Show it; the system automatically credits the miner with a reward

Bitcoin

- Reward
 - On average, 1 proof (= 1 block) will be found every 10 minutes – the proof difficulty automatically adjusts
 - However, these proofs can correspond to empty transaction blocks...
 - To prevent this, transactions attach a transaction fee, which is a payment to whichever miner includes that transaction into a block

Bitcoin

- Scaling issues
 - New miners need to download full (growing) global transaction ledger
 - Each block can only store about 6,000 transactions (=10 transactions per second)
 - Changes require soft/hard fork
- Transaction delay
 - Need to wait for blocks (several to be safe)
 - Each block is 10 minutes

Ethereum

- Can be thought of as "Bitcoin+ with smart contracts" – transaction delay is reduced, more transactions can be supported
- Smart contracts are programs that Ethereum nodes execute in the same way

Attacks galore

- Writing a smart contract correctly is very difficult
- DAO hack (\$150 mil): the vulnerable program was "If you want to empty your account, I will check your account balance, then give you money, then set your account to 0" -> vulnerable to a TOCTTOU-like attack
- Axie Infinity hack (\$615 mil): PDF file containing trojans
- Key-stealing attacks, "Key-stealing attacks"
- Malware that targets cryptocurrency software specifically
- Attraction to attacks due to being completely irreversible (except that one time)