
Lecture notes: Differential Privacy

Differential privacy protects data with a mathematical formulation by returning noisy query results.
Two data sets D1 and D2 are said to be neighboring if at most one row (one person’s data) is

different between D1 and D2. For example, if D1 includes all the patients that have visited the
hospital today by 1 PM, one patient came in between 1 PM and 1:05 PM, and D2 includes all the
patients by 1:05 PM, then D1 and D2 are neighboring.

Observe that a query Q can reveal private details of that last patient if applied to the above D1

and D2. Suppose Q returns the number of people who have a sensitive condition at the hospital. If
Q(D1)+1 = Q(D2), then we know that the last patient who arrived has that sensitive condition. In
order to hide such a compromising analysis, we need Q(D1) and Q(D2) to randomly return values
according to similar probabilistic distributions.

For a query Q to be differentially private, Q(D) needs to be a random variable with a probability
distribution of possible outputs. Then, a query Q is said to be a ε-differentially private query if for
any neighboring data sets D1 and D2, and for any possible output value k,

Pr(Q(D1) = k)

Pr(Q(D2) = k)
≤ eε

Note the following about the above definition:

� e is the natural number. ε must be a constant, independent of D.

� The above must be simultaneously true for all values k that can be the output of a query on
a data set. ε is not dependent on k.

� The above must also be simultaneously true for all neighboring datasets. Differential privacy
is applied to a query, not to an underlying dataset.

� ε cannot be negative.

� Generally, the way to achieve differential privacy is to take the regular, non-private query
Q̄(D) (which returns the true value) and add random noise, so Q(D) = Q̄(D)+R where R is
some random noise taken from a random distribution.

� As a consequence of the definition, if any valid data set can return some given value k with
non-zero probability, then all valid data sets must be able to return k with some probability.
A further corollary is that deterministic queries cannot be differentially private, except the
trivial query that returns the same value for all input.

Achieving differential privacy requires us to also define the concept of sensitivity of a query. The
sensitivity of a query measures how much its (true) value can change between neighboring datasets:

S(Q̄) = max
neighboring D1,D2

||Q̄(D1)− Q̄(D2)||

Sensitivity of some common queries:

� COUNT or conditional COUNT: 1. The maximum change in the value of such a COUNT is
1 when one person’s data is changed.

� SUM: M , where M is the maximum possible value of a person’s data (assuming the minimum
is 0).

� MEAN: M/N , where M is as above and N is the smallest possible size of the data set.

1

To achieve bounded sensitivity in the SUM and MEAN cases, we can pre-process the data by
forcing (loose) upper and lower bounds on the data elements as well as the size of the data.

We give two examples of mechanisms that can satisfy the above definition.

Example 1. Consider the above hospital database. Suppose there are Q̄(D) patients with HIV, a
sensitive medical condition. The hospital nevertheless wants to output the total count noisily; note
that the count query has sensitivity 1.

It will output Q(D) = Q̄(D) + R, where R is sampled as follows. First, decide the sign of R
randomly by flipping a coin (heads will be positive, tails will be negative). Then, flip coins until
we see tails. With each heads flip, the size of the counter will be increased by 1. We can see
that the probability of returning Q̄(D) + δ as a result of this procedure is the two-sided geometric
distribution, Pr(Q(D) = Q̄(D) + δ) = (1/2)|δ|+2 for δ ̸= 0, and Pr(Q(D) = Q̄(D)) = (1/2). Then
for any k = Q̄(D2) + ∆k, where ∆k ≥ 2, observe that k = Q̄(D1) + ∆k − 1 is the worst case, i.e.
Q̄(D1) is 1 closer to k then Q̄(D2).

Pr(Q(D2) = k)

Pr(Q(D1) = k)
=

(1/2)|∆k|

(1/2)|∆k|−1
= 2

The inverse can be shown to be equal to 2 as well if ∆k ≤ 0. If ∆k = 0, the above becomes 4.
Therefore, Q satisfies ln 4-differential privacy.

Example 2. Consider a database of salaries of professors. Suppose the university allows you to
make a query on the mean salary paid to professors, with noise from Laplace(0, b) (a Laplace
distribution with mean 0 and diversity b) added to the output. Its probability density function f
satisfies:

f(x|0, b) ∝ e−|x|/b

Suppose the true mean salary of D1 is Q̄(D1) and the mean salary of D2 is Q̄(D2). For any k
where k = Q̄(D1) + x1 = Q̄(D2) + x2,

Pr(Q(D2) = k)

Pr(Q(D1) = k)
=

e−
|x2|
b

e−
|x1|
b

= e

|x1| − |x2|
b

≤ e

|x1 − x2|
b

= e

|Q̄(D1)− Q̄(D2)|
b

Observe that the maximum possible value of |Q̄(D1) − Q̄(D2)| is the definition of sensitivity.

Therefore, Q satisfies S(Q)
b

-differential privacy, where S(Q) = M/N , M being the maximum possible
value of a professor’s salary and N being the minimum size of the data set. Also note that this is
the only part where we use the fact that Q is the mean query: we can replace the above analysis
with any query (with bounded sensitivity) and calculate its ε in the same way.

We now give two examples of mechanisms that do not achieve differential privacy.

Example 3. Replace the above example with Gaussian noise instead of Laplacian noise. Gaussian
noise has probability density function f satisfying:

f(x|0, σ) ∝ e−|x2|/σ2

2

The second power of x will prove to be a problem when we re-do the above analysis:

Pr(Q(D2) = k)

Pr(Q(D1) = k)
=

e−
|x22|
σ2

e−
|x21|
σ2

= e

|x2
1| − |x2

2|
σ2

= e

|x2
1 − x2

2|
σ2 (when x1 ≥ x2 ≥ 0)

= e

|Q̄(D1)− Q̄(D2)||x1 + x2|
σ2

We examine what |x1 + x2| means by first starting with k. k represents what D1 and D2 could
return upon the query Q. The differential privacy statement is: seeing the data set return k should
not give much information about whether the underlying data set is D1 or D2 for any neighboring
data sets. The differential privacy equation must hold for all possible values of k. x1 is the gap
between k and the true value Q̄(D1); similarly x2 is that for Q̄(D2). Therefore, both x1 and x2 can
be arbitrarily large. This makes the ratio of probabilities unbounded, so it is not possible to achieve
ε-differential privacy for any ε.

Example 4. Consider any one sided noise that returns values greater than 0. This noise cannot
achieve differential privacy. Suppose that two data sets have Q̄(D1) = 1 and Q̄(D2) = 2. Then:

Pr(Q(D2) = 1.5) = 0
Pr(Q(D1) = 1.5) > 0

This causes their ratio to be unbounded.

Differential privacy is also highly useful for data collection. In particular, Apple uses the private
count mean sketch to collect information about energy-consuming websites, popular phrases, and
emojis. Private count mean sketch roughly works as follows. First, we create a series of hashes h1,
h2, ..., hM . The maximum output of the hash is N . For any instance we would like to collect, we
choose a random hash (say, h2) and calculate the hash h2(website). We then convert it to a one-hot
vector:

(0, 0, . . . , 0, 1 , 0, . . . , 0)
↑

this is the h2(website)-th position

Next, we flip every bit in the array independently with probability
1

eε/2 + 1
. This noisy output

is submitted to the data collection agency, which is the attacker in this scenario. (You can challenge
yourself to calculate why this gives ε-differential privacy: two neighboring datasets are two different
websites that this person could have visited, and choose k to be the output that gives the most
information, which is in fact the output that does not flip any bits.)

The data collection agency builds an M times N matrix summing up all the vectors submitted
by each person, where each row corresponds to one of the M hashes and the columns are possible
outputs of the hash. To then determine the actual incidence rate of a website, the agency looks
up the elements i, hi(website) for i from 1 to M , averages them, and multiplies it by a constant to
adjust for it being a biased estimator. The use of M hashes resolves the hash collision issue: even if
two websites map to the same value under one hash, they are very unlikely to do so across multiple
hashes. With enough data, there will be little noise on the final result.

3

