
Total points: 80 (+6 bonus)

Assignment 2

Due: 11:59 PM, 10th July (Wed)

Written assignment

1. [10 points] In February 2015, it was found that Lenovo computers came pre-installed with
Superfish. Superfish adds itself as a root certificate authority to the computer. Every
time a user visits an HTTPS site with a valid certificate, Superfish instead generates a
fake certificate for the website to the user, and the browser would automatically trust
such certificates. (The website’s real certificate is intercepted and never presented to
the user.) Using the fake certificate, Superfish identified users’ browsing patterns and
added or changed advertisements on web pages, creating a scandal for Lenovo. In the
same month, Windows Defender started removing Superfish, and Lenovo ended their
partnership with Superfish.

(a) [4 points] Explain why Superfish is able to change the contents of an encrypted web
page. Be specific about what Superfish steals, intercepts, and/or changes. (Hint: If
the user is talking to the website using the website’s encryption key, then Superfish
certainly cannot change the contents because Superfish doesn’t have the website’s
decryption key. So...)

(b) [3 points] Superfish used the same signing key in every laptop computer. If an
attacker (not Superfish) wants to impersonate a website, explain how the attacker
can generate a valid certificate for that website to present to any computer with
Superfish installed.

(c) [3 points] How can a careful user notice that their computer is infected by Superfish
using the browser?

1 CMPT403 A2

2. [15 points] Download the file vignere.txt from the course website, which contains a ci-
phertext created using the Vignere cipher. Break it.

The ciphertext is created as follows:

1. Only letters in the plaintext are used - whitespace, numbers and punctuation are
removed. All letters are converted to upper case.

2. Each letter is assigned a number, starting with A = 0, B = 1, ..., Z = 25.

3. The key is a string of upper case letters, with unknown length K (at least 5).

4. To encrypt a letter with a key letter, add them modular 26.

• e.g. C (2) + F (5) = H (7)

• e.g. T (19) + N (13) = G (6)

5. The n-th letter is encrypted with the (n mod K)-th letter of the ciphertext, where
K is the length of the key string, and indices start at 0.

The encryption code is available as vignere encrypt.py.

You need to put in your report:

• The key and the first word of the plaintext.

• All steps you took to arrive at the result, including a description of any methods
you used and explanation of why they work.

• Screenshots showing snippets of relevant code. There is no need to submit the code.

Your submission for this entire problem (Vignere cipher) should be in your pdf file.

2 CMPT403 A2

Programming assignment

Breaking Cryptography

In this assignment, we will continue to write programs to automatically break some weak
ciphers. Please make sure to read the submission instructions carefully.

Two-Time Pad [25 points]

Two files, ctext0 and ctext1, have been sent to you by e-mail. Those two files were
encrypted using the same one-time pad. They are exactly 600 bytes each, and they both
come from popular English Wikipedia articles. Find the contents of both files using
crib-dragging, and submit them as ptext0 and ptext1. You can flip around ptext0 and
ptext1.

You may assume the plaintext to consist only of ASCII characters with the following
byte values, all ranges being inclusive of both ends:

• Symbols: 32 to 41, 44 to 59, 63, 91, 93.

• Capital letters: 65 to 90.

• Small letters: 97 to 122.

The ctext file was derived by XOR’ing the plaintext (as ASCII bytes) with the key. Each
byte of the ctext file would be the XOR of the corresponding byte of plaintext with the
corresponding byte of the key (written as bit strings). If you cannot find the full texts,
submit as much of the text as you can find.

Padding Oracle Attack [30 points]

AES — the standard block cipher in use today — had a padding algorithm that intro-
duced vulnerabilities when combined with CBC (Ciphertext Block Chaining). Leverag-
ing this vulnerability, the attacker can arbitrarily decrypt and encrypt in AES without
knowledge of the key, and even without any understanding of the operations of AES. In
this assignment, we will recreate this attack.

The following is an adaptation of Vaudenay’s “Security Flaws Induced by CBC Padding
— Applications to SSL, IPSEC, WTLS ...” paper. However, the padding scheme is
intentionally different from the one used in that paper, to discourage plagia-
rism. A solution derived directly from that paper will not work for this assignment.

AES encrypts plaintexts in blocks of 16 bytes at a time. If there are fewer than 16 bytes
of plaintext data, AES adds padding bytes to the end of the plaintext until there are
16 bytes exactly. (During decryption, those padding bytes will be discarded.) If there
are more than 16 bytes of data, AES operates on each block one by one in order, and
pads the final block to 16 bytes. If there are n real bytes, then we pad to 16 bytes with

3 CMPT403 A2

null characters, except the last byte is set to the total amount of padding in the block.
For example, suppose the plaintext we want to encrypt is:

x′ = (CA013AB4C561)16

In the above, x′ is written in hexadecimal notation, and it has 6 bytes. We want to add
10 bytes to make 16 bytes to make x, the padded version of x′:

x = (CA013AB4C5610000000000000000000A)16

Note that the minimum amount of padding is 1 byte: that is to say, if the original
plaintext has a multiple of 16 bytes, then we will add an additional block of null bytes
(but the last byte is set to (10)16.

After padding x′ to x, we can perform AES encryption (denote the operation as C) on
x to get the ciphertext C(x). C is dependent on the secret key K and the initialization
vector IV ; the attacker knows IV because it is sent in the clear.

Suppose x contains N blocks of data (in other words, the size of x is 16N bytes), denoted
as (x1|x2| . . . |xN). | is the concatenation operation, meaning that the bytes of x1 are
followed by that of x2, and then by x3, and so on. After encryption, the resulting
ciphertext is (IV |y1|y2| . . . |yN). In CBC mode, we have:

y1 = C(IV ⊕ x1)
yi = C(yi−1 ⊕ xi) for i = 2, 3, . . . , N

The inverse of C, the AES block encryption function, is denoted as D, the block decryp-
tion function. Note that both C and D do not perform any padding on their own; they
both input and output 16 bytes of data. For any 16-byte block z, D(C(z)) = z.

We will now break AES in CBC mode with such padding using a padding oracle. A
padding oracle is some entity that tells the attacker if the padding of some ciphertext
(IV |y1| . . . |yN) is correct after decryption. In other words, it decrypts (IV |y) using
the correct key, gets the plaintext x, and checks if x uses the correct padding scheme
described above. The padding oracle has been shared with you. (See “Notes on the
Padding Oracle” later for more details on how to run the padding oracle.)

Suppose we are deciphering some ciphertext (IV |y1| . . . |yN). There will be three steps.
First, we will learn how to find the last byte of xN (“Decrypt byte”). Then, we will find
the whole xN (“Decrypt block”). Finally, we will find all of (x1|x2| . . . |xN) (“Decrypt”).

— Decrypt byte —

Extract yN from the ciphertext by taking the last 16 bytes, and yN−1 as the last 32 to
16 bytes. Denote the ith byte of yN as yN,i. Here, we want to find xN,16.

1. First, generate a random block r = (r1|r2| . . . |r15|i) with 15 random bytes, followed
by a byte i. Initially i = 0.

4 CMPT403 A2

2. Ask the padding oracle if (r|yN) is valid. (r|yN) contains the 16 bytes of r, followed
by the 16 bytes of y.

3. If the padding oracle returns “no”, increment i by 1, and then ask the padding
oracle again. Keep incrementing i until the padding oracle returns “yes”.

4. Replace r1 with any other byte and ask the oracle if the new (r|yN) has valid
padding. If the padding oracle returns “yes”, similarly replace r2. Repeat until
either we have finished replacing r15 and the oracle always returned “yes”, or the
oracle has returned “no” while we were replacing some rk.

5. If the oracle always returned “yes” in Step 4, set D(yN)16 = i⊕ 1.

6. If the oracle returned “no” when we replaced rk in Step 4, set D(yN)16 = i⊕(17−k).

7. The final byte of xN is xN,16 = D(yN)16 ⊕ yN−1,16.

— Decrypt block —

After finding xN,16, the attacker can proceed to find all other bytes of xN , starting
from the 15th byte xN,15, then xN,14, and proceeding backwards to xN,1. In this pro-
cess, the attacker will also find D(yN)16, D(yN)15, . . . , D(yN)1 as above. The following
describes how the attacker can find xN,k for any k; the attacker has already found
D(yN)k+1, D(yN)k+2, . . . , D(yN)16.

1. Set r as (r1|r2| . . . |rk−1|i|D(y)k+1|D(y)k+2| . . . |D(y)16 ⊕ (17− k)). Initially i = 0.

2. Ask the oracle if r|yN is valid.

3. If the padding oracle returns “no”, increment i and ask the padding oracle again.
Keep incrementing i until the padding oracle returns “yes”.

4. When the padding oracle returns “yes”, set D(yN)k = i

5. The k-th byte of xN is xN,k = D(yN)k ⊕ yN−1,k.

— Decrypt —

The above shows how the attacker can decrypt the last block yN to obtain XN . To
decrypt the k-th block yk, the attacker simply replaces all of the above yN with yk and
yN−1 with yk−1.

Write a program, decrypt, which finds the plaintext x for any ciphertext y and outputs
it to standard output. It is run with:

./decrypt ciphertext OR python3 decrypt.py ciphertext OR java decrypt ciphertext

ciphertext is a file that contains an amount of data that is a multiple of 16 bytes, and
at least 32 bytes. It is formatted as IV |y1| . . . |yN , where the IV is the first 16 bytes, y1
are bytes 17 to 32, and so on. The plaintext is in ASCII.

Your program will be terminated in 10 minutes. The maximum size of the ciphertext is
64 bytes, which takes about 4 minutes on the marking machine.

5 CMPT403 A2

After you get the plaintext, write it to a file called ”plaintext.txt”. Do not write any
additional text into the file.

You should tackle the assignment step by step: do the “Decrypt byte” step, then the
“Decrypt block” step, then the “Decrypt” step. In case you cannot finish the assignment,
marks will be given for partially completing each step.

Hint: Suppose you are given the ciphertext (IV |y1|y2). Write down the plaintext (x1|x2)
using D, IV , y1, and y2. (It is not simply D(y1) and D(y2).)

Bonus (6 points)

Write a program, encrypt, which takes in some plaintext x and encrypts x using the
same encryption algorithm and key that is behind the padding oracle provided. It is run
with:

./encrypt plaintext OR python3 encrypt.py plaintext OR java encrypt plaintext

plaintext contains an amount of data that is a multiple of 16 bytes, and at least 16
bytes. It is formatted as x1|x2| . . . |xN . Output the ciphertext and the IV to standard
output as IV |y1| . . . |yN .

(Hint: encrypt should call decrypt as a subroutine in order to guess the right ciphertext.
You only need to call decrypt once for each block. Note that you can choose your own
IV. You can assume your decrypt and encrypt code are in the same folder.)

6 CMPT403 A2

Notes on the padding oracle

The padding oracle should be run with:

python3 oracle.py ciphertext

You need to install pycrypto to run the oracle. pycrypto is slightly out of date, and you
may need to use an older version of Python - it is confirmed to work up to Python 3.9.

It will decrypt the ciphertext with the secret AES key, check the padding of the plaintext,
and output “1” if the padding is correct and “0” if the padding is incorrect.

You will also have to capture the output and feed it into your own code. The command
to do so is system(<your command>) in C and C++, subprocess.check output(<your

command>) in Python, and Runtime.getRuntime().exec(<your command>) in Java. You
may have to look up your preferred function to learn how to use it.

Since the oracle is not compiled, the key is hardcoded into the oracle code. Do not use
the key in any way. When we test your code, we will use an oracle with a different key.
Your code should work independent of what the actual key value is.

You are also provided with a ciphertext called ciphertext for reference, with its genera-
tor ciphertext gen.py. It was encrypted with the same key as the oracle, and you can see
the IV and plaintext used to create it; see if you can decrypt it correctly.

7 CMPT403 A2

Submission instructions

All submissions should be done through CourSys. Submit the following files:

• a2.pdf, containing all your written answers. Make sure it is not the question file.

• ptext0 and ptext1, for part (a) of the programming assignment.

• decrypt.{cpp, py, java}, for part (b) of the programming assignment, as well as
any other code necessary to run it. This may include a Makefile. Submit your code;
do not submit any compiled files. You may also submit encrypt.{cpp, py, java}
for the bonus marks. The bonus marks can only be applied to this assignment.

To run decrypt, for example, I will do the following:

C++: I will compile ./g++ decrypt.cpp -o decrypt and then run ./decrypt.

Python3: I will call python3 decrypt.py.

Java: I will compile javac decrypt.java and then call java decrypt.

If you are using Python, pleaase make sure it is Python3 instead of Python2.
If there is a Makefile in your folder, the Makefile will override all of the above. I will call

make to compile the code, and then I will call make run.
Keep in mind that plagiarism is a serious academic offense; you may discuss the assign-

ment, but write your assignment alone and do not show anyone your answers and code.
The submission system will be closed exactly 48 hours after the due date of the assign-

ment. You will receive no marks if there is no submission within 48 hours after the due
date.

8 CMPT403 A2

