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Motivation

• Do not have enough data from the target domain to 
train a model.

• Have a machine learning model for a source domain.
• Applying it as is to the target domain does not work, if 

the IID (independent and identically distributed) 
assumption is violated.

• Transfer learning relaxes the assumption.
• Source and target domain need to have same input and 

output and need to be semantically related.
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Motivation

• What to transfer?
training examples,
features,
model parameters,
feature extractor, . . .

• How to avoid negative transfer?
Transfer that leads to worse performance than training a 
model on the target data from scratch.
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Motivation

Example
source domain target domain 
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Definitions

• X: input (covariates, independent variables)

• Y: output (dependent variable, outcome)

• Domain: examples assumed to have been generated 
from unknown probability distribution

• Source domain: p(X), p(Y|X)

• Target domain q(X), q(Y|X)

• Covariate shift: q(x) <> p(x) and q(y|x) = p(y|x)
Most common scenario

• But there may also be a shift in p(y|x). 
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Definitions

• Three scenarios
• Some labeled target examples

pre-training and fine-tuning
• No labeled target examples

domain adaptation
• No target examples (but multiple source domains)

domain generalization
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Definitions

• We focus on transfer learning for DNNs.
• DNN learns latent representation Z, which is lower-

dimensional, captures the essence of the input and is 
used to predict the class Y.

Feature extractor Classifier

Z
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Pre-training and fine-tuning

• Train (pre-train) a source DNN and then copy its first n 
layers to the first n layers of a target DNN. 

• The remaining layers of the target network are then 
randomly initialized and trained using the target data. 

• Fine-tuning the copied layers:
adjust their parameters performing some epochs of 
backpropagation using the target data. 

• Frozen copied layers:
their parameters do not change during training on the 
target task. 
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Pre-training and fine-tuning

• The choice between fine-tuning and freezing depends 
on the size of the target dataset and the number of 
parameters in the first n layers. 

• If the target dataset is small and the number of 
parameters is large, fine-tuning may result in overfitting.

• If the target dataset is large or the number of 
parameters is small, then the source parameters can be 
fine-tuned to the new task to improve performance. 
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Pre-training and fine-tuning

• Want to transfer the first n layers of the feature 
extractor from source to target domain.

• How to determine the number n?
• Features of the first layers tend to be general, higher-

layer features more specific.
• Transfer tends to work if the features are general, 

meaning suitable to both source and target tasks, 
instead of specific to the source task.
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Pre-training and fine-tuning 
[Yosinski et al 2014]

• Can we quantify the degree to which a particular layer is 
general or specific? 
Degree of generality of set of features learned on task A: 
the higher the lower the loss  to which the features can 
be used for another task B.

à This definition depends on the similarity between 
A and B. 

• Does the transition occur suddenly at a single layer, or is 
it spread out over several layers?
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Experimental Design

• Simulating similar domains.
• Using the ImageNet dataset.
• Randomly assign half of the 1000 classes to A and half 

to B. 
• ImageNet contains clusters of similar classes, 

particularly dogs and cats. Thus A and B are similar 
when created by randomly assigning classes to each.
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Experimental Design

• Simulating different domains.
• Using again the ImageNet dataset.
• ImageNet comes with a hierarchy of classes. 
• Create two datasets that are as dissimilar as possible

dataset A containing only man-made entities and B 
containing natural entities.
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Experimental Design

Pre-trained 
on dataset A  

Pre-trained 
on dataset B  

Fine-tuned 
and tested on 
dataset B  
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Experimental Results

On similar datasets A and B

n
First layers are more general / transferrable
Selffer loses accuracy due to co-adapted layers 
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Experimental Results

On dissimilar datasets A and B

n

First layers are more general / transferrable
Transferring from A to B is easier than from B to A
Transferring to a dissimilar dataset is harder than

transferring to a similar dataset

BnA

AnB
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Domain Adaptation 
[Ben-David et al 2010] 

• Assume that we have plentiful labeled training data 

from a source distribution but no labeled training data 
drawn from the target distribution.

• Assume a binary classification problem.

• Under what conditions on the source and target 

distributions can we expect to learn well?

• Domain

distribution D on inputs X and a labeling function
(ground truth) f : X →{0, 1}

• source domain <DS,fS>, target domain <DT,fT>
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Domain Adaptation 

• Hypothesis (classifier) is a function h : X →{0, 1}
• Source classification error

• Theorem: Bound for the target classification error
For any hypothesis h: 
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Domain Adaptation

• The third term (difference of the labeling functions) is 
assumed to be small.

P(Y|X) is the same in both domains
•

is the L1 (variation) divergence.
B is the set of measurable subsets under D and D’.

• The L1 divergence cannot be accurately estimated from 
finite samples of arbitrary distributions.
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Domain Adaptation

• Use the H divergence instead

• It measures the capacity of the hypothesis class H to distinguish 
between examples from the two different distributions.

• Approximate it through the empirical H divergence

where I[a] is the indicator function which is 1 if predicate a is
true, and 0 otherwise.
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Domain Adaptation

• In domain adaptation, need to minimize the first two 
terms, i.e. source classification error and difference 
between the distribution of the domains.

• Ds and Dt are given and assumed to be different, i.e. 
P(X) is different in both domains.

• Learn a latent representation Z of X that has similar 
distribution in both domains. 

• Need a practical measure of the difference of two 
distributions.
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Domain-Adversarial Neural 
Networks [Ajakan 2014]

• Empirical H divergence in the representation space 

• Consider H as the class of hyperplanes in the 
representation space. 

• Use logistic regression model: 
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Domain-Adversarial Neural 
Networks

• We replace the minimization part of the empirical H 
divergence by the following:

• We obtain the following overall loss function:
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Domain-Adversarial Neural 
Networks

DANN Architecture 
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Domain-Adversarial Neural 
Networks

• The neural network and the domain regressor are 
competing against each other, in an adversarial manner: 
the regressor wants to distinguish the domains, while 
the neural network wants to learn a representation that 
makes that hard.

• Optimization strategy 1: EM-style optimization
Alternate between optimizing the adversarial 
parameters u; d and the other regular neural network 
parameters W;V; b; c.



26

Domain-Adversarial Neural 
Networks

• Optimization strategy 2: 
modified stochastic gradient descent
Iterate until convergence:
Sample a pair of source and target example (xsi; xtj) and 
apply a gradient step update of all parameters.

• The update of the regular parameters follows as usual 
the opposite direction of the gradient.

• But for the adversarial parameters u; d the step must 
follow the gradient’s direction.
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Domain-Adversarial Neural 
Networks

• Optimization strategy 2: 
modified stochastic gradient descent
Iterate until convergence:
Sample a pair of source and target example (xsi; xtj) and 
apply a gradient step update of all parameters.

• The update of the regular parameters follows as usual 
the opposite direction of the gradient.

• But for the adversarial parameters u; d the step must 
follow the gradient’s direction.
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Universal Domain Adaptation 
[You et al. 2019]

• Most publications consider closed domain adaptation 
(DA), where the sets of classes in the source (Cs) and the 
target domain (Ct) are identical.

• Universal DA (UDA): assume shared classes as well as 
private source classes and private target classes.

• Challenge: align only the examples from shared classes, 
without knowing the classes in the target domain.

• p(.,.): probability density distribution of source data
q(.,.): probability density distribution of target data
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Universal Domain Adaptation 

• Source classes
• Target classes
• Common classes
• Private source classes
• Private target classes 
• Task of  UDA

1) distinguish between target data coming from C and 
target data coming from
2) classify target data from C, i.e. minimize
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Universal Domain Adaptation 

Training phase

F: feature extractor D’: non-adversarial domain discriminator 
G: classifier D:  adversarial domain discriminator 
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Universal Domain Adaptation 

• Feature extractor F:
maps source and target examples x to a latent 
representation z. 

• Classifier G
estimates probability distribution ˆy = G(z) of x over the 
source classes Cs.
Classification error 

• Non-adversarial domain discriminator Dʹ:
computes the similarity dʹ = Dʹ(z) of x to the source 
domain. Error 
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Universal Domain Adaptation 

• Adversarial domain discriminator D:
adversarially aligns the feature distributions of the 
source and target data from the common classes C.
Error 

where            and            denote the probability of a 
source / target sample x belonging to the common label 
set C.

• The non-adversarial domain discriminator D’ is 
employed to compute            and .
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Universal Domain Adaptation 

• Optimization through a minimax game

• Testing phase
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Universal Domain Adaptation 

• How to compute the sample-level transferability 
criterion            and           ?

• Assumptions on source domain similarity d’ and 
prediction uncertainty H (entropy)

• Definitions
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Domain Generalization

• Compared to Domain Adaptation
No target data
Data from K > 1 (seen) source domains
Goal is to classify examples from (unseen) target domain

• Basic assumption
- there exists a feature space shared by all the

seen source domains and the unseen target domain,
- which captures information to discriminate the classes.
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Domain Generalization

• Common approach
learning a representation via minimizing the difference 
between the seen source domains

• Challenge
the learned representation may overfit to the source 
domains and perform poorly on an unseen target 
domain.
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Domain Generalization with 

Adversarial Feature Learning [Li et al 2018] 

a]

• Learn a universal representation across domains by

1) minimizing the MMD difference between the seen

source domains, and

2) matching the distribution of data in the 

representation space to a prior distribution.

• The method (called MMD-AAE) is based on an 

adversarial autoencoder (AAE) [23] extended to the 

multiple domain learning setting. 
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Domain Generalization with 
Adversarial Feature Learning 

Q

P

C

D
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Domain Generalization with 
Adversarial Feature Learning 

• Overall loss

• Lerr: classification error of C
• Lae: reconstruction error of P(Q(.)
• Rmmd: variance of the representations across the seen 

domains
• Igan: discrimination error of D
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Domain Generalization with 
Adversarial Feature Learning 

• The encoder Q and decoder P are shared between all 
seen domains.

• To avoid overfitting to the seen domains, the 
representations h (= Q(x)) are matched to a prior 
distribution p(h), using the adversarial discriminator D.

• Any prior distribution could be assumed. 
• In the experiments, a Laplace distribution was used.
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Domain Generalization with 
Adversarial Feature Learning 

• To make the latent representations invariant to the seen 
source domains, an MMD-based regularization term 
Rmmd is added.

where F is a given kernel function and Hi is the
distribution of representations in domain i
MMD = Maximum Mean Discrepancy

• In the experiments, a mixture kernel was used that 
averages the RBF kernels with bandwidths = 1, 5, 10.
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Domain Generalization with 
Adversarial Feature Learning 

• Theorem

is an upper bound o.       is an upper bound of the

variance of the representation distributions Hi
• Definition of Rmmd
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Meta-Learning for Domain 
Generalization [Li et al. 2018 b]

• Train a base learner on a set of source domains by 
synthesising virtual training and virtual testing domains 
within each minibatch. 

• Minimize the loss on the training domains, while 
ensuring that the direction taken to achieve this also 
leads to an improvement of the (virtual) testing loss.

• Algorithm MLDG
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Meta-Learning for Domain 
Generalization

• At each learning iteration the original S source domains 
S are split into S−V meta-train domains S¯ and V (virtual) 
meta-test domains S˘.

• Meta training
The model parameters Q are updated (obtaining Q’) 
on all the S −V meta-train domains S¯ in aggregate, using 
the loss function

where l(.) is a classification loss
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Meta-Learning for Domain 
Generalization

• Meta testing
Simulates testing on new domains.
The loss for the adapted parameters Q’ on the meta-
test domains is defined as follows:

• Overall loss
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Meta-Learning for Domain 
Generalization

• The overall loss can be reformulated as

where (" # $) denotes the dot product of two vectors
• Optimize the parameters Q so that

1) the loss in the meta-training and the meta-testing 
domains is minimized and that
2) the gradients of the loss in both sets of domains have 
a similar direction (maximize their dot product).
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Meta-Learning for Domain 
Generalization

Pseudo-Code
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Directions for Future Research

• Most domain adaptation methods address a scenario of 
closed sets of class labels.

• Universal domain adaptation (UDA) is a more practical 
scenario.

• Existing UDA methods classify all target examples that 
do not seem to belong to a shared class as “unknown”, 
but the target domain may have multiple private 
classes.

• How to discover all the private classes and label all 
classes accurately? 
[Brbic et al 2020]    [Li et al 2021]   [Tanwisuth et al 2020]
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Directions for Future Research

• Classifiers should not only be accurate but also be 
calibrated, i.e. the confidence of their prediction should 
be similar to the accuracy.

• Calibration is crucial in mission-critical applications.
• Many DNNs are over-confident.
• In transfer learning there seems to be a trade-off: the 

more accurate the model on the target domain, the less 
calibrated.

• How to transfer such that the resulting model is both 
accurate and well-calibrated?
[Gong et al. 2021] [Park et al. 2020]   [Wang et al. 2020] [Yu et al. 2022]
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Directions for Future Research

• Most predictive models are based on correlations 
between X and Y.

• But correlations may be spurious and not transfer to a 
target domain.

• Causal models are believed to transfer better between 
domains since they model mechanisms of data 
generation. 

• How to use structural causal models (SCMs) to improve 
domain adaptation and domain generalization?

[Javidian et al 2021]  [Lv et al 2022]   [Wang et al 2021]   [Yang et al 2021]
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