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Motivation

* Do not have enough data from the target domain to
train a model.

 Have a machine learning model for a source domain.

* Applying it as is to the target domain does not work, if
the IID (independent and identically distributed)
assumption is violated.

* Transfer learning relaxes the assumption.

* Source and target domain need to have same input and
output and need to be semantically related.



Motivation

 What to transfer?
training examples,
features,
model parameters,
feature extractor, . ..

* How to avoid negative transfer?

Transfer that leads to worse performance than training a
model on the target data from scratch.



Motivation

Example

source domain target domain

Art painting




Definitions

X: input (covariates, independent variables)

Y: output (dependent variable, outcome)

Domain: examples assumed to have been generated
from unknown probability distribution

Source domain: p(X), p(Y|X)
Target domain q(X), q(Y|X)

Covariate shift: g(x) <> p(x) and q(y|x) = p(y|x)
Most common scenario

But there may also be a shift in p(y|x).




Definitions

Three scenarios

Some labeled target examples
pre-training and fine-tuning

No labeled target examples
domain adaptation

No target examples (but multiple source domains)
domain generalization




Definitions

* We focus on transfer learning for DNNs.

* DNN learns latent representation Z, which is lower-
dimensional, captures the essence of the input and is
used to predict the class Y.
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SFU

Pre-training and fine-tuning

* Train (pre-train) a source DNN and then copy its first n
layers to the first n layers of a target DNN.

 The remaining layers of the target network are then
randomly initialized and trained using the target data.

* Fine-tuning the copied layers:
adjust their parameters performing some epochs of
backpropagation using the target data.

* Frozen copied layers:
their parameters do not change during training on the
target task.



SFU

Pre-training and fine-tuning

* The choice between fine-tuning and freezing depends

on the size of the target dataset and the number of
parameters in the first n layers.

* If the target dataset is small and the number of
parameters is large, fine-tuning may result in overfitting.

* If the target dataset is large or the number of
parameters is small, then the source parameters can be
fine-tuned to the new task to improve performance.



SFU

Pre-training and fine-tuning

* Want to transfer the first n layers of the feature
extractor from source to target domain.

e How to determine the number n?

* Features of the first layers tend to be general, higher-
layer features more specific.

* Transfer tends to work if the features are general,
meaning suitable to both source and target tasks,
instead of specific to the source task.
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Pre-training and fine-tuning

[Yosinski et al 2014]

* Can we quantify the degree to which a particular layer is
general or specific?
Degree of generality of set of features learned on task A:
the higher the lower the loss to which the features can
be used for another task B.

- This definition depends on the similarity between
A and B.

* Does the transition occur suddenly at a single layer, or is
it spread out over several layers?
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Experimental Design

e Simulating similar domains.

* Using the ImageNet dataset.

 Randomly assign half of the 1000 classes to A and half
to B.

* ImageNet contains clusters of similar classes,
particularly dogs and cats. Thus A and B are similar
when created by randomly assigning classes to each.
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Experimental Design

e Simulating different domains.
* Using again the ImageNet dataset.
* ImageNet comes with a hierarchy of classes.

* Create two datasets that are as dissimilar as possible
dataset A containing only man-made entities and B
containing natural entities.
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Experimental Design

input
A

input
B
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Experimental Results

On similar datasets A and B

0.66— : . : .
® @ @
0.64} o @® o ® 2 @ |
= Q ®
5 A g o ® 4 ® ‘9
2 0.62f O e ‘9 o |
E 0.60 .i
2 ® A
Z o *
g 0.58 g g
~osel| O baseB L 4 |
) ® selffer BnB ¢
|_
@® selfferBnB*
0.54; € transfer AnB g |
@ transfer AnB*
0525 1 5 5 i 5 : — n
First layers are more general / transferrable
Selffer loses accuracy due to co-adapted layers 15



Experimental Results

On dissimilar datasets A and B

Man-made/Natural split
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16



Domain Adaptation

[Ben-David et al 2010]

Assume that we have plentiful labeled training data
from a source distribution but no labeled training data
drawn from the target distribution.

Assume a binary classification problem.

Under what conditions on the source and target
distributions can we expect to learn well?

Domain

distribution D on inputs X and a labeling function
(ground truth) f : X {0, 1}

source domain <DS,fS>, target domain <DT,fT>
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Domain Adaptation

* Hypothesis (classifier) is a function h : X {0, 1}

 Source classification error

ES(h’ f) — EX’V’DS [lh(X) o f(X)|]

 Theorem: Bound for the target classification error

For any hypothesis h:
er(h) <es(h) +d,(Ds, Dr)
+min{Epy [| fs(x) — fr®I].Ep, [| fs(x) — frx®I] }
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Domain Adaptation

* The third term (difference of the labeling functions) is

assumed to be small.
P(Y|X) is the same in both domains

* d\(D,D") =2sup |Prp [B] — Pryy [B]]
BenB

is the L1 (variation) divergence.
Bis the set of measurable subsets under D and D'.

 The L1 divergence cannot be accurately estimated from
finite samples of arbitrary distributions.
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Domain Adaptation

 Use the H divergence instead

du(DE,DF) <

Pr [n(x*)=1] - Pr_[n(x") =1] ‘

xS N’D§Y xt N’D{,Y

2 sup
neH

* It measures the capacity of the hypothesis class H to distinguish
between examples from the two different distributions.

* Approximate it through the empirical H divergence

dy(S,T) &

1 m 1 m’
2(1—min | — n(x3%) = — n(xt) =
-(1 min [m;f[n(xz) 1]+m,;f n(x?) O]D

where /[a] is the indicator function which is 1 if predicate a is
true, and O otherwise. 20



Domain Adaptation

* In domain adaptation, need to minimize the first two
terms, i.e. source classification error and difference
between the distribution of the domains.

 Ds and Dt are given and assumed to be different, i.e.
P(X) is different in both domains.

* Learn a latent representation Z of X that has similar
distribution in both domains.

* Need a practical measure of the difference of two
distributions.
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Domain-Adversarial Neural
Networks [Ajakan 2014]

* Empirical H divergence in the representation space

dy (h(S),h(T)) =
2 (1 —min [iZI [n(h(Xf)) = 1} + iif [7?(11(7(;)) :0} })

neH | M 4 m/
1

e Consider H as the class of hyperplanes in the
representation space.

* Use logistic regression model:

o(¢) det sigm(d + uT(b)
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Domain-Adversarial Neural
Networks

* We replace the minimization part of the empirical H
divergence by the following:

r _i m o _im’ ] . '
nllfldh( -m.;'c (O(Xi)ﬂl) -m.’izzzlﬁ (O(Xi).o))
 We obtain the following overall loss function:
Wn\lfH%) ,C [77? Z ﬁ
- d T d
+)\nl}qd\<( mZE ‘ m/’ ZL )]
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Domain-Adversarial Neural
Networks

DANN Architecture

classification output domain regressor
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Domain-Adversarial Neural
Networks

* The neural network and the domain regressor are
competing against each other, in an adversarial manner:
the regressor wants to distinguish the domains, while

the neural network wants to learn a representation that
makes that hard.

* Optimization strategy 1: EM-style optimization
Alternate between optimizing the adversarial
parameters u; d and the other regular neural network
parameters W,V; b; c.
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Domain-Adversarial Neural
Networks

* Optimization strategy 2:
modified stochastic gradient descent
Iterate until convergence:
Sample a pair of source and target example (xsi; xtj) and
apply a gradient step update of all parameters.

 The update of the regular parameters follows as usual
the opposite direction of the gradient.

e But for the adversarial parameters u; d the step must
follow the gradient’s direction.
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Domain-Adversarial Neural
Networks

* Optimization strategy 2:
modified stochastic gradient descent
Iterate until convergence:
Sample a pair of source and target example (xsi; xtj) and
apply a gradient step update of all parameters.

 The update of the regular parameters follows as usual
the opposite direction of the gradient.

e But for the adversarial parameters u; d the step must
follow the gradient’s direction.

27



Universal Domain Adaptation

[You et al. 2019]

* Most publications consider closed domain adaptation
(DA), where the sets of classes in the source (Cs) and the
target domain (Ct) are identical.

* Universal DA (UDA): assume shared classes as well as
private source classes and private target classes.

* Challenge: align only the examples from shared classes,
without knowing the classes in the target domain.

* p(.,.): probability density distribution of source data
q(.,.): probability density distribution of target data

28



SFU

Universal Domain Adaptation

G
e Source classes C.

* Target classes Ci

e Common classes C =C;NCq

* Private source classes C, = C; \ C
* Private target classes C, = ¢, \ C

* Task of UDA
1) distinguish between target data coming from C and
target data coming from C;
2) classify target data from C, i.e. minimize

]E(xyquc [f( )%Y]
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Universal Domain Adaptation e

Training phase

[ conv layer (] fc layer O loss

F: feature extractor D’: non-adversarial domain discriminator
G: classifier D: adversarial domain discriminator
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Universal Domain Adaptation e

.|
* Feature extractor F:
maps source and target examples x to a latent
representation z.

e Classifier G
estimates probability distribution "y = G(z) of x over the
source classes Cs.
Classification error Ea = Ex y)pL (v, G(F(x)))

* Non-adversarial domain discriminator D":
computes the similarity d’ = D'(z) of x to the source
domain. Error Ep = —E,-,log D’ (F (x))

— Ex~glog (1 — D' (F (x)))
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Universal Domain Adaptation

.|
* Adversarial domain discriminator D:
adversarially aligns the feature distributions of the
source and target data from the common classes C.
Error Ep =— Ex~pw’(x)log D (F'(x))
— Ex~qw' (x)log (1 — D (F (x)))
where w*(x) and w'(x) denote the probability of a
source / target sample x belonging to the common label
set C.

e The non-adversarial domain discriminator D’ is
employed to compute w*(x) and w’(x).

32
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Universal Domain Adaptation

-
* Optimization through a minimax game

max min Fg — A\Ep

D F.G
11]131,11 Ep
e Testing phase
G Py argmax y
»‘." NO
X Z w unknown
D' j~d
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Universal Domain Adaptation e

* How to compute the sample-level transferability
criterion w?®(x)and w'(x)?
* Assumptions on source domain similarity d’ and
prediction uncertainty H (entropy)
Fxpe d' > Bxped > Bxnged > Exg, d’

Ex~ge, H(Y) > Exnge H(Y) > Exnpe H(Y) > Expe H(Y)

—~. = e e e e - - -

H(% 5
e Definitions w'(x)= 100_(%)' — d'(x)

log |Cs| .
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Domain Generalization

.|
* Compared to Domain Adaptation

No target data

Data from K> 1 (seen) source domains

Goal is to classify examples from (unseen) target domain

* Basic assumption
- there exists a feature space shared by all the

seen source domains and the unseen target domain,
- which captures information to discriminate the classes.
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. . . SFU
Domain Generalization

(.
e Common approach
learning a representation via minimizing the difference
between the seen source domains

* Challenge
the learned representation may overfit to the source

domains and perform poorly on an unseen target
domain.
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Domain Generalization with
Adversarial Feature Learning wietazos

* Learn a universal representation across domains by
1) minimizing the MMD difference between the seen
source domains, and

2) matching the distribution of data in the
representation space to a prior distribution.

 The method (called MMD-AAE) is based on an

adversarial autoencoder (AAE) [23] extended to the
multiple domain learning setting.
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Domain Generalization with
Adversarial Feature Learnin
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Domain Generalization with

Adversarial Feature Learning

e Qverall loss

CI}BDP Hl[‘c')iX Eerr + Aoﬁae + A{Rmmd + )\2 jgal’l

L., classification error of C
* L, reconstruction error of P(Q(.)

* R, .4 Variance of the representations across the seen
domains

* |0 discrimination error of D
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Domain Generalization with

Adversarial Feature Learning

e The encoder Q and decoder P are shared between all
seen domains.

* To avoid overfitting to the seen domains, the

representations h (= Q(x)) are matched to a prior
distribution p(h), using the adversarial discriminator D.

Jgan = Ep~pm)llog D(h)| +Ex,x)[log(1—D(Q(x)))]

* Any prior distribution could be assumed.

* In the experiments, a Laplace distribution was used.
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Domain Generalization with

Adversarial Feature Learning

* To make the latent representations invariant to the seen

source domains, an MMD-based regularization term
R...0is added.

MMD(H, H,)? = 23" o(hy,) — > o(hy,)

where @is a given kernel function and Hi is the
distribution of representations in domain i

MMD = Maximum Mean Discrepancy

* In the experiments, a mixture kernel was used that
averages the RBF kernels with bandwidths =1, 5, 10.
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Domain Generalization with

Adversarial Feature Learning

e Theorem

1 N .
el Y MMD(H;,H,).is an upper bound of the
1<i, j <K

variance of the representation distributions Hi

* Definitionof R4

R

1
mmd(Hla---:HK) — ﬁ Z MMD(HZHJ)

1<i,j<K
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Meta-Learning for Domain
Generalization (et 2018)

* Train a base learner on a set of source domains by

synthesising virtual training and virtual testing domains
within each minibatch.

* Minimize the loss on the training domains, while
ensuring that the direction taken to achieve this also
leads to an improvement of the (virtual) testing loss.

e Algorithm MLDG
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Meta-Learning for Domain
Generalization

* At each learning iteration the original S source domains
S are split into S-V meta-train domains S™ and V (virtual)
meta-test domains S".

* Meta training

The model parameters ® are updated (obtaining ®’)

on all the S -V meta-train domains S™ in aggregate, using
the loss function

S—v
F(.) = S; Z Zfe 757,y

where /(.) is a classification Ioss
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Meta-Learning for Domain
Generalization

* Meta testing
Simulates testing on new domains.

The loss for the adapted parameters ®” on the meta-
test domains is defined as follows:

Z Zfe (35", 95")

e Qverall loss

argénin F(O©)+ BG(O — aF'(0))
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Meta-Learning for Domain
Generalization

e The overall loss can be reformulated as

argénin F(O)+ BG(O) — Ba(G'(©) - F'(©))

where (a - b) denotes the dot product of two vectors

* Optimize the parameters ® so that

1) the loss in the meta-training and the meta-testing
domains is minimized and that

2) the gradients of the loss in both sets of domains have
a similar direction (maximize their dot product).
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Meta-Learning for Domain
Generalization

Pseudo-Code

procedure MLDG

Input: Domains &

Init: Model parameters ©. Hyperparameters a, (3, 7.

for ite in iterations do
Split: Sand S + S B
Meta-train: Gradients Vg = F5(S;0)
Updated parameters ©' = © — aVg
Meta-test: Loss is G(S; ©').
Meta-optimization: Update ©

A(F(S;0) + BG(S;0 — aVe))
00

©=0—vy

end for

end procedure .
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Directions for Future Research " -

.|
* Most domain adaptation methods address a scenario of
closed sets of class labels.

e Universal domain adaptation (UDA) is a more practical
scenario.

e Existing UDA methods classify all target examples that
do not seem to belong to a shared class as “unknown”,
but the target domain may have multiple private
classes.

 How to discover all the private classes and label all

classes accurately?

[Brbic et al 2020] [Lietal 2021] [Tanwisuth et al 2020] .



FU

Directions for Future Research " -

.|
* Classifiers should not only be accurate but also be

calibrated, i.e. the confidence of their prediction should
be similar to the accuracy.

e Calibration is crucial in mission-critical applications.
 Many DNNs are over-confident.

* In transfer learning there seems to be a trade-off: the
more accurate the model on the target domain, the less
calibrated.

 How to transfer such that the resulting model is both
accurate and well-calibrated?

[Gong et al. 2021] [Park et al. 2020] [Wang et al. 2020] [Yu et al. 2022] 49
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Directions for Future Research " -

(.
* Most predictive models are based on correlations

between X and .

e But correlations may be spurious and not transfer to a
target domain.

e Causal models are believed to transfer better between

domains since they model mechanisms of data
generation.

 How to use structural causal models (SCMs) to improve
domain adaptation and domain generalization?
[Javidian et al 2021] [Lv et al 2022] [Wang et al 2021] [Yang et al 2021]
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