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Motivation

• Want to know the effect of a treatment.
• Examples: new drug, mask policy, . . .
• Standard approach: Randomized Controlled Trial (RCT). 

Assign participants randomly to treatment / no 
treatment (control) and evaluate the difference of the 
average effects in the treatment and the control group.

• RCTs are expensive and often unethical.
• But observational data may be available.
• How to estimate the treatment effect from 

observational data?
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Motivation

• Observational data records only the factual outcome.
• If we can predict the counterfactual outcome, then we 

can compute the treatment effect.
• Counterfactual outcome cannot be predicted by simply 

training a model from the observed data, due to 
selection bias.

• Selection bias is due to confounders that affect the 
treatment assignment and the outcome. The observed 
outcomes are caused by the treatment and by the 
confounder.
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Motivation

Simpson’s Paradox
Evaluate the success of two treatments A and B
for kidney stones

Treatment A is more successful for both small and
large stones but is overall less effective.
Treatment B is preferred for small stones (easy) while
treatment A is preferred for large stones (hard).

Treatment 
Stone size

A B

Small 81/87 = 93% 234/270 = 87%

Large 192/263 = 73% 55/80 = 69%

Overall 273/350 = 78% 289/350 = 83%
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Definitions

• Dataset of observations
! = {(%&, (), *))|1 ≤ & ≤ -}

• Unit: entity to which treatment is applied
• X: covariates (multi-dimensional)
• T: treatment (treatment assignment)

in the binary case: 1=treatment/0=no treatment
• Y: outcome, 
• Confounder

Variable C that causally affects the treatment 
assignment and the outcome.  
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Definitions

• Potential outcome 
In the binary case: every unit has two potential 
outcomes: ! " = 1 = ! 1 and ! " = 0 = ! 0
outcomes on unit i: !)(1) and !)(0)

• Observed outcome 
outcome of the treatment that was actually applied
" = *: observed outcome is !7

• Counterfactual outcome
The hypothetical, missing potential outcome. 
" = *: counterfactual outcome is !:;7
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Definitions

• Individual Treatment Effect (ITE) on unit i is defined as 
the difference of the potential outcomes:

!"#$ = &$ 1 − &$ 0
• Average treatment effect (ATE)

*"# = # & 1 − & 0
• Conditional average treatment effect (CATE)

common measurement when the treatment effect 
varies across different subgroups

+*"# = # & 1 − & 0 |- , e.g.
+*"#./01 = # & 1 − & 0 |- = 2345
+*"#61./01 = # & 1 − & 0 |- = 752345
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Identifiability 

• Estimating treatment effects from observational data is 
hard.

• The treatment effect is identifiable only under certain 
assumptions. Otherwise, the estimate may be biased.

• Stable Unit Treatment Value Assumption 
The outcome of unit i depends only on the treatment(s) 
of unit i, not the treatments of the other units.

• Positivity and Overlap
The treatment assignment is not deterministic.

0 < # $ = & ' = ( < 1
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Identifiability 

• Ignorability
The potential outcome Y(t) is independent of the 
treatment assignment T given the covariates X.

{" 1 , " 0 } ⊥ (|*
• Confounder

A variable that affects both the treatment assignment 
and the outcome.
Ignorability means that there is no unobserved (not part 
of X) confounder. 
à Ignorability also called Unconfoundedness.

1
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Identifiability 

• Selection bias
The existence of confounders leads to selection bias: 

! " # ≠ ! "
à In an RCT, ! " # = !(").
• Selection bias implies that a model trained on factual 

outcomes will be inaccurate when predicting 
counterfactual outcomes.

1
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Identifiability 

• Causal graph
A directed acyclic graph where nodes represent 
variables and edges represent probabilistic 
dependencies.

• Backdoor criterion
A set of variables (nodes) X satisfies the backdoor 
criterion for T and Y if no node in X is a descendent of T
and X blocks every path between T and Y that contains a 
directed edge into T.
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Identifiability 

Both !", !$ and !$, !% satisfy the backdoor criterion for
!& and !*
But !$ does not
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Identifiability 

• If X satisfies the back-door criterion relative to T and Y,
then the causal effect of T on Y is identifiable.

• To estimate the treatment effect, condition on (adjust 
for) X.

!"# = #%[#' ( 1 * − #' ( 0 * ]
• If the backdoor criterion is satisfied, the potential 

outcome of two units with the same covariates is the 
same. 

• The treatment assignment mechanism is also identical. 
• If all confounders are observed, i.e. are part of X, X

satisfies the backdoor criterion.
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Identifiability 

• Propensity score
! " = $(& = 1|")

• Sufficiency of the propensity score
If the ATE is identifiable from observational data by 
adjusting for X, then adjusting for the propensity score 
g(X) also suffices to identify the ATE.

*&+ = +, +- . 1 ! " − +- . 0 ! "

à Sufficiency holds only for ATE, not for ITE.
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Adapting Neural Networks for the 
Estimation of Treatment Effects [Shi et al. 2019] 

• How to exploit the sufficiency of the propensity score 
for a neural network?

• DragonNet
• ATE of a binary treatment
• It suffices to adjust for only the information in X that is 

relevant for predicting the treatment.
• The parts of X that are not relevant for predicting the 

treatment are irrelevant for the estimation of the causal 
effect, and are effectively noise for the adjustment. As 
such, conditioning on these parts may hurt the 
performance.
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Adapting Neural Networks for the 
Estimation of Treatment Effects 

• A multi-task neural network predicting the propensity 
score and the conditional outcomes ! 1 and ! 0 .

• Learn a latent representation Z of X which works for all 
three prediction tasks. 

• Trade off accuracy of outcome prediction for accuracy of 
prediction of the propensity score.

• 2-hidden layer neural networks for each of the outcome 
models.

• A simple linear map followed by a sigmoid for the 
propensity score model to tightly couple the 
representation to the estimated propensity score.
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Adapting Neural Networks for the 
Estimation of Treatment Effects 

!"#$%&'



18

Adapting Neural Networks for the 
Estimation of Treatment Effects 

• How to evaluate the performance of causal inference 
methods?

• There are no datasets with ground truth treatment 
effects.

• Use semi-synthetic datasets:
real-life covariates
treatment assignment and outcome are synthetic

sampled from distributions f(X) and g(X) 
that depend on X

• Measure the MAE or RMSE
comparing the predicted and the ground truth outcome.
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Adapting Neural Networks for the 
Estimation of Treatment Effects 

• Infant Health and Development Program (IHDP) dataset

• Single binary treatment, continuous outcome.

• Mimics a study on infant development. 

• Treatment = child had home visit from a trained 
provider. 

• 24 covariates

• Outcome is cognitive test scores, and the goal is to 
measure the causal effect of the home visits. 

• Benchmark contains ten replications of a study. 
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Disentangled representations for 
counterfactual regression [Hassanpour et al. 2019]

• Estimation of ITE of a binary treatment
• Outcome binary or continuous
• Propensity score is not sufficient
• Learn a disentangled representation Z consisting of 

three independent components:
1) ∆ influences T and Y
2) Γ influences only T
3) Υ influences only Y
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Disentangled representations for 
counterfactual regression

• Graphical model
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Disentangled representations for 
counterfactual regression

• Neural network consists of
- three representation learning networks

à ! =< Γ, ∆, Υ >
- two outcome prediction networks

- one treatment prediction network
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Disentangled representations for 
counterfactual regression

• Representation learning loss
According to the graphical model, 

use Maximum Mean Discrepancy (MMD) 
to calculate dissimilarity between the two 
conditional distributions of Υ given t=0 versus t=1
• Outcome prediction loss

can only be calculated on the observed outcomes
L2-loss or log-loss

• Treatment prediction loss
Cross entropy loss
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Disentangled representations for 
counterfactual regression

• Overall loss
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Causal Effect VAE [Louizos et al., 2017]

• Estimation of ITE of a binary treatment
• Does not assume unconfoundedness.
• Uses a latent representation Z as a proxy for unobserved 

confounders.
• Uses VAE to learn the latent representation.
--> CEVAE
• VAE make weaker assumptions about the data 

generating process and the structure of the hidden 
confounders.
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Causal Effect VAE

• Graphical model

àZ is a proxy for unobserved confounders
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Causal Effect VAE

Model network 
recover !(#, %, &, ')



28

Causal Effect VAE

Inference network 
infer ! ", $ %, &)
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Directions for Future Research

• Critical analysis of latent variable models in the 
presence of unobserved confounders 
[Rissanen et al., 2021]
Presents counter-examples where CEVAE fails to identify 
the treatment effect.

• Continuous treatments
Often treatments can be applied at different doses.
Not just one treatment (and one control) group but 
infinitely many treatment groups
[Schwab et al., 2020] 
[Nie et al., 2021]
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Directions for Future Research

• Multiple treatments
In many applications, multiple treatments are applied 
simultaneously.
Treatments and their effects interact with each other. 
[Egami et al, 2018] [Wang et al., 2019]
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