
Interpreting neural network models



Interpretability is the degree to which a 
human can understand the cause of a 

decision.



Why interpret?



Local interpretation: Explain a model’s prediction on 
a single input example.

Global interpretation: Explain how a model makes 
predictions across all examples.



Example model: Predicting contents of an 
image



Example model: Predicting gene expression 
from DNA sequence
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Outline

• Model-based interpretation
• Saliency map
• Understanding interactions
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Understanding simple neural networks



Inspecting individual nodes

https://medium.com/dataseries/visualizing-the-feature-maps-and-filters-by-convolutional-neural-networks-e1462340518e



Inspecting individual nodes

DOI: 10.1109/MAPR.2018.8337517

http://dx.doi.org/10.1109/MAPR.2018.8337517


Inspecting individual nodes

DOI: 10.1109/MAPR.2018.8337517
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 Figure 2. Approaches to model-based interpretation. (A) Individual convolutional filters act as position weight matrices (PWMs) that scan an input sequence for a pattern. 
(B) Each node of the network learns a certain sequence pattern. Finding subsequences that activate the given nodes above a threshold allows for researchers to annotate them 
through PWM construction. (C) Ablating a filter or node shows how important that node is for the final prediction. (D) Attention is an extra layer in the network that helps the network 
to focus only on the most relevant input features. Visualizing attention weights gives an impression of what basis the network used when making a final prediction.
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What impact does each node have on the 
final prediction?

Novakovsky et al, In Press



Visualizing a hidden node

https://christophm.github.io/interpretable-ml-book/

Idea: Use gradient descent to find the input that 
maximizes the activation of a given node.



Visualizing a hidden node
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Visualizing a hidden node

https://christophm.github.io/interpretable-ml-book/

Idea: Use gradient descent to find the input that 
maximizes the activation of a given node.

Maximize Minimize



Questions about model-based interpretation



Outline

• Model-based interpretation
• Saliency map
• Understanding interactions



Saliency map

Saliency map: An estimate of the importance of each 
input feature.



Interpretation through perturbation



A model's gradient gives the saliency of 
each input (backpropagation)
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Figure 3. Approaches to propagation-based interpretation. (A) In silico mutagenesis setting. A mutation of a target base pair to each of the alternative 
three nucleotides leads to a change in the model's prediction. These changes are collected for all three options and used to construct a saliency map 
(heatmap on the right). Areas with higher performance changes correspond to informative features, such as TF motifs. (The representation of this figure 
was inspired by Figure 5b in a previous review article by Eraslan and colleagues 2)(B) The importance of a motif of interest can be inferred by embedding 
it in a random sequence and checking the difference in the model's predictions to the original sequence. (C) Calculating the gradient of the model's output 
with respect to the input sequence approximates the importance of each position for the final prediction. This gradient is usually multiplied by the input 
sequence to focus only on present nucleotides (right).
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Problem: Saturating nonlinearities.
There are many solutions: Integrated Gradients, DeepLIFT, DeepSHAP, ...



Integrated gradients



Integrated gradients



DeepLIFT



DeepLIFT



DeepLIFT



Saliency: Local to global



Saliency: Local to global



Saliency: Local to global

Cluster

DOI: 10.1038/s41588-021-00782-6

http://dx.doi.org/10.1038/s41588-021-00782-6


Outline

• Model-based interpretation
• Saliency map
• Understanding interactions



Multiple perturbation for identifying 
interactions

Sequence of interest
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Figure 4. Approaches to reveal interactions between features in model performance. (A) A scheme of the combinatorial motif in silico perturbation analysis. A given sequence with two motif 
instances is changed so that either one or both motifs are mutated. The network's output is recorded for each alternative and compared to the reference. The prediction change for the joint mutation 
is compared to the sum of changes for the marginal mutations to infer the potential interaction effect. (B) Deep Feature Interaction Maps compare the attribution scores computed for the reference 
sequence with both motif instances to the scores of an altered sequence, where one of the motifs is scrambled. If the scores differ significantly, it might imply the dependency of the motifs on each other.
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Limitations of interpretability



Attention



Motivating problem: translation



Idea #1: Recurrent neural network

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.
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Idea #1: Recurrent neural network

(X+H)×H×L

(H+Y+H)×H×L
(Y+H+H)×Y×L

0

# parameters

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



Idea #2: Give the network access to more 
hidden states

(H+Y+MH)×H×L

# parameters

X hT-M:T

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



Aside: What makes one architecture better 
than another?

• Complexity vs. generalizability tradeoff.
• Inductive bias.
• Computational efficiency.

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



(H+Y+H)×H×L

# parameters

Idea #3: Do some computation for each 
input, then average



Attention

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.
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Attention

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



Attention

(H+Y+H)×H×L

0

# parameters

0
(H+H)×H×L

(X+H)×H×L

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



Outline

• Attention variants
• Self-attention and transformers
• Applications



Generalized attention



Generalized attention

v1 q1 v2 q2 v3 q3
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Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



Generalized attention

v1 q1 v2 q2 v3 q3

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



Generalized attention

v1 q1 v2 q2 v3 q3

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An attentive survey of attention models. ACM 
Transactions on Intelligent Systems and Technology (TIST), 12(5), 1-32.



Hard vs. soft attention



Outline

• Attention variants
• Self-attention and transformers
• Applications



Self-attention

Input
hj = (1)(2)



Positional encoding

How to represent relative position:
• Idea #1: One-hot encoding of distance.



Positional encoding

How to represent relative position:
• Idea #1: One-hot encoding of distance.
• Idea #2: Binary encoding.



Positional encoding

How to represent relative position:
• Idea #1: One-hot encoding of distance.
• Idea #2: Binary encoding.
• Idea #3: Sinusoids of different frequencies.



Positional encoding

How to represent relative position:
• Idea #1: One-hot encoding of distance.
• Idea #2: Binary encoding.
• Idea #3: Sinusoids of different frequencies.

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Transformer

Vaswani et al, 2017



Outline

• Attention variants
• Self-attention and transformers
• Applications



Self-supervised pre-training of language 
models

https://amitness.com/2020/05/self-supervised-learning-nlp/



Predicting gene expression
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Predicting gene expression

Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from 
sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 
(2021). https://doi.org/10.1038/s41592-021-01252-x

https://doi.org/10.1038/s41592-021-01252-x


Attention can be interpretable



Questions and future directions: Attention
• How can we trade off complexity, generalizability 

and computation?
• In each application, what attention architectures 

are effective?
• In what settings are attention weights provide a 

useful explanation?



Questions and future directions: 
Interpretation

• Do interpretations report spurious associations 
present in the training set?

• How can interpretation account for un-identifiability 
of machine learning?

• What interpretation approaches are relevant for a 
given goal?

• How can we aggregate gradient-based saliency into 
a global (or large-scale local) interpretation?



Questions and future directions: 
Interpretation

• Do interpretations report spurious associations 
present in the training set?

• How can interpretation account for un-identifiability 
of machine learning?

• What interpretation approaches are relevant for a 
given goal?

• How can we aggregate gradient-based saliency into 
a global (or large-scale local) interpretation?



Speaking



• Content
• Visual aids

• Slides
• Schematics
• Data figures

• Delivery



Presentations should have a main 
thesis



Err on the side of too much 
background



Re-engage the audience using a 
home slide



• Introduction
• Methods
• Results
• Conclusion

Outline



Machine learning methods for the genotype-phenotype relationship, 
gene regulation and epigenomics

ACCGTCGGTATAGGCTTATAAATCTCGGGAT

Genome sequence

Transcription factor
binding

Gene regulation

Phenotype

Predict

Chromatin
state

Cluster

Impute

Predict



Text should be in full sentences



"Method A crash rate too high"

Text should be in full sentences



• Slide titles: Use a full sentence explaining the main point 
of the slide.

• Notation, acronyms: Re-introduce every time you use it.
• Animate in each slide element as you present it.
• Make every slide element legible (font size 18+)



Reduce text by translating it to 
schematics



A class of methods known as semi-automated genome 
annotation (SAGA) algorithms are widely used to perform 
such integrative modeling of diverse genomics data 
sets. These algorithms take as input a collection of genomics 
data sets from a particular cell type. They output (1) a set of 
integer state labels, such that each state label putatively 
corresponds to a type of genomic activity (such as active 
promoter, active transcription or repressed region), and (2) a 
partition of the genome and annotation of each genomic 
segment with one state label. These methods are “semi-
automated” because a human performs a functional 
interpretation of the state labels after the annotation process. 
In this interpretation step, the human assigns 
an interpretation term to each state label, such as 
“Promoter” or “Repressed”, indicating its putative function. 

Reduce text by translating it to 
schematics



H3k36me3 ChIP-seq
CTCF ChIP-seq

DNaseI-seq
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Segmentation and genome annotation (SAGA)

Annotation

Segmentation and genome annotation (SAGA) 
algorithms partition and label the genome on the 

basis of genomics data sets

ChromHMM:  Ernst, J. and Kellis, M. Nature 
Biotechnology, 2010

Segway:  Hoffman, M et al. Nature Methods, 2012
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What biological phenomenon does each 
unsupervised label correspond to?

83

Integer-label
annotation

1 2 3 2 3 2 000

Comparison to known phenomena
Genes

Genomics data

…

Biological 
interpretation
0 = Quiescent 
1 = Enhancer
2 = Promoter
3 = Gene body
…
18 = Novel type of 
element?



Figures should make a point



Walk the audience through each 
figure
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