
Cybersecurity Lab II

Buffer Overflow

Attacker Goal

• Take over target machine (such as a web server)
• Execute arbitrary (bad) code on target by altering application control flow

• Examples:
• Buffer overflows

• Format string vulnerability

• Other hijacking attacks (e.g., Integer overflow)

2

Today

Buffer Overflows

• Result from mistakes in memory management when writing code
• very common coding flaws because C functions are exposed to memory

management
• Common even from experienced programmers!

• They often happen in programs written in C/C++
• Why?

• Why not in programs written with other languages such as Java or Go?

3

Buffer overflows are common in languages/runtimes that
let programmers manage the memory

Buffer Overflows

• One of the most used attack techniques

• From attacker perspective:
• Pros

• very effective: attack code runs with privileges of exploited process

• can be exploited locally and remotely

• Cons
• Architecture-dependent: inject bytecode

• OS-dependent: use of system calls

• guesswork involved (correct addresses)

4

History: Morris Worm

• Released in 1988 by Robert Morris
• Grad student at Cornell

• First felony conviction in the US under cybersecurity law

• Now a professor at MIT

• Unintentional harm:
• Worm was intended to propagate slowly and harmlessly measure the size of

the Internet

• Due to a coding error, it created new copies as fast as it could and
overloaded infected machines

• $10-100M worth of damage

5

History: Morris Worm and Buffer Overflow

• One of the propagation techniques was a buffer overflow attack
against a vulnerable version of fingerd on VAX systems
• By sending special string to finger daemon, worm caused it to execute code

creating a new worm copy

6

> char buffer[512];
> gets(buffer);

Recent Incidents

• WhatsApp

• “…the phone starts revealing its encrypted content, mirrored on a
computer screen halfway across the world. It then transmits back the
most intimate details such as private messages and location, and even
turns on the camera and microphone to live-stream meetings.”

• The vulnerability was reported as a buffer overflow bug.

• Vulnerabilities reported as “memory corruption”, or “memory safety”
are often buffer overflow bugs

7

https://www.ft.com/content/7f2f39b2-733e-11e9-bf5c-6eeb837566c5

https://www.ft.com/content/7f2f39b2-733e-11e9-bf5c-6eeb837566c5

Recall: Process Memory Organization

• A process is divided into three regions.

• Text
• Fixed region
• Includes instructions and Read-only data

• Data
• Initialized and uninitialized data
• Dynamic vars (heap)

• Stack (LIFO abstraction)
• Maintains state of caller/callee of functions
• Used for storing:

• Local variables
• Parameters
• Return value

8

TEXT

DATA

STACK

High memory
address

Low memory
address

Overflow Types

• Overflow memory region on the stack
• overflow function return address

• overflow function base pointer

• Overflow (dynamically allocated) memory
region on the heap

• Overflow function pointers

9

Saved BP

Ret. Address

Local Vars

Args

BP

SP Next location

Caller SF

We will focus on Stack Buffer Overflow

Stack Region: Function Call
int func(int a, int b) {

int i = 3;

return (a+b)*i;

}

int main() {

int result = 0;

result = func(4, 5);

printf("%d\n", result);

}

10

Saved BP

Ret. Address

4

5

3

func() Stack Frame

A Closer Look

11

0x08048XXX (?)

4

5

A Closer Look

12

0x08048447

4

5

0xbfffecf8

3

main() SF

The func Stack Frame

13

0x08048447

4

5

0xbfffecf8

3
x/<fmt> <address>
<fmt>: is a repeat count followed by a format letter and a size letter.

• Format letters are o(octal), x(hex), d(decimal), u(unsigned
decimal), t(binary), f(float), a(address), i(instruction), c(char),
s(string) and z(hex, zero padded on the left).

• Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).

Let’s Take Control of a Program

• Code (or parameters) get injected because
• program accepts more input than there is space allocated

• In particular, an array (or buffer) has not enough space
• especially easy with C strings (character arrays)

• plenty of vulnerable library functions

strcpy, strcat, gets, fgets, sprintf …

• Input spills to adjacent regions and modifies, two possibilities:
1. “normally”, this just crashes the program (e.g., SIGSEGV)

2. code pointer or application data
• all the possibilities that we have enumerated before

14

Example: Simple Web Server
void serve(char *str) {

char buf[100];

strcpy(buf, str);

}

int main(int argc, char* argv[]) {

serve(argv[1]);

printf(“Bye\n");

}

15

Allocate 100 bytes on the stack

Copy str to local buffer

Saved BP

Ret. Address

buf

Caller SF

str

printf

What if buf exceeds the 100 bytes?
void serve(char *str) {

char buf[100];

strcpy(buf, str);

}

int main(int argc, char* argv[]) {

serve(argv[1]);

printf(“Bye\n");

}

16

strcpy does NOT check
whether the string at
*str contains fewer
than 100 bytes!

Saved BP

Ret. Address

buf

Caller SF

str

printf

• If a string longer than 100 bytes is copied into buffer, it
will overwrite adjacent stack locations.

New loc

Example: Let’s Crash the Server

17

$./server_vuln hello
$ Bye

$./server_vuln
AAA
AAA
AA
Segmentation fault
$

Input length < 100 bytes

Input length > 100 bytes

Why?

What happened?

18

41 41 41 41

41 41 41 41

41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41
41 41 41 41

Caller SF

41 41 41 41

printf

buf

Saved BP

Ret. Address

str

0x41414141
???

What if buf contains bad code?
void serve(char *str) {

char buf[100];

strcpy(buf,str);

}

int main(int argc, char* argv[]) {

serve(argv[1]);

printf(“Bye\n");

}

19

strcpy does NOT check
whether the string at
*str contains fewer
than 100 bytes!

Saved BP

Ret. Address

buf

Caller SF

str

printf

• When function returns, code in the buffer will be
executed, giving attacker a shell
• Root shell if the victim program is setuid root

New loc.

execve(“sh”)

Problem: Choosing Where to Jump

• Address inside a buffer of which the attacker controls the content
• works for remote attacks

• the attacker need to know the address of the buffer, the memory page
containing the buffer must be executable

• Address of a function inside the program
• works for remote attacks, does not require an executable stack

• need to find the right code, one or more fake frames must be put on the stack

• Address of a environment variable
• easy to implement, works with tiny buffers

• only for local exploits, some programs clean the environment, the stack must
be executable

20

Jumping into the Buffer

• The buffer that we are overflowing is usually a good place to put the
code (bytecode) that we want to execute

• The buffer is somewhere on the stack, but in most cases the exact
address is unknown
• The address must be precise: jumping one byte before or after could make

the application crash
• NOP sled (later) partly weakens this requirement

• On the local system, it is possible to calculate the address with a debugger,
but it is very unlikely to be the same address on a different machine

21

Scenario 1 – Jump to Shellcode

22

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

How to find this
address?

Scenario 1 – Jump to Shellcode

23

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

90 90 90 90
90 90 90 90
90 90 90 90

Our
Payload

We don’t need the exact address

We need to add dummy instructions
that will lead to our shellcode!

Scenario 2 – JMP to Register (ret2reg)

24

Saved BP

Ret. Address

buf

Caller SF

str

printf

eax

Scenario 2 – JMP to Register (ret2reg)

25

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

eax

jmp eax

1

Scenario 2 – JMP to Register (ret2reg)

26

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

eax

jmp eax

1

2

Scenario 2 – JMP to Register (ret2reg)

27

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

eax

jmp eax

1

2

How to find this
instruction?

Hint 1: the bytecode is FF E0

Can we use other registers?

Hint 2: What is loaded besides our code?

Scenario 3 – JMP to ESP

28

Saved BP

Ret. Address

buf

Caller SF

Args

printf

jmp esp

esp

Scenario 3 – JMP to ESP

29

Saved BP

Ret. Address

buf

Caller SF

Args

printf

jmp esp

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

esp

Scenario 3 – JMP to ESP

30

Saved BP

Ret. Address

buf

Caller SF

Args

printf

jmp esp

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

esp

Scenario 3 – JMP to ESP

31

Saved BP

Ret. Address

buf

Caller SF

Args

printf

jmp esp

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

esp

How to find this
instruction?

The bytecode is FF E4

Scenario 4 – JMP to different code path

32

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address

90 90 90 90
90 90 90 90
90 90 90 90

DIFF_PATH

Recap: The NOP Sled (0x90)

• A sled is a “landing area” that is put in front of the shellcode

• Must be created in a way such that wherever the program jump into
it always

1. finds a valid instruction

2. reaches the end of the sled and the beginning of the shellcode

• The simplest sled is a sequence of no operation (NOP) instructions
• single byte instruction (0x90) that does not do anything

• It mitigates the problem of finding the exact address to the buffer by
increasing the size of the target are area

33

Recap: JMP using a register

1. Find a register that points to the buffer (or somewhere into it)
• ESP

• EAX (return value of a function call)

2. Locate an instruction that jump/call using that register
• can also be in one of the libraries

• does not need to be a real instruction (just the right sequence of bytes)

• you can search for a pattern with gdb find jmp ESP = 0xFF 0xE4

3. Overwrite the return address with the address of that instruction

34

Tip 1: Copying Shellcode

• Shellcode is usually copied into a string buffer

• Problem
• any null byte would stop copying

→ null bytes must be eliminated from the shellcode!

35

mov eax, 0x4 b8 04 00 00 00 mov al, 0x4 b0 04

replace with

mov eax, 0x0 xor eax, eax

replace with

Tip 2: Relative Addressing Technique

36

pop esi

jmp call_addr

“Hello, world!”

jmp_addr

Shellcode

call jmp_addr + 1
call_addr

esi now holds address of msg

Relative Addressing Technique

37

pop esi

“Hello, world!”

Shellcode

call call_addr + 2
call_addr

Why not this one?

pop esi

jmp call_addr

“Hello, world!”

jmp_addr

Shellcode

call jmp_addr + 1
call_addr

Tip 3: Enable Privileges

• Problem:
• exploited program could have temporarily dropped privileges

• Technique:
• Shellcode has to enable privileges again (using setuid)

• How? What is setuid?

38

Small Buffers

• Buffer can be too small to hold exploit code

• Store exploit code in environment variable
• environment stored on stack

• return address has to be redirected to environment variable

• Advantage
• exploit code can be arbitrary long

• Disadvantage
• access to environment needed

39

Tip 4: Every Byte Matters (Examples)

40

xor eax, eax
xor ecx, ecx
xor edx, edx

xor ecx, ecx
mul ecx

replace with

xor eax, eax
mov al, 0x5

push 0x5
pop eax

replace withInitialize a register:

Zero out multiple registers:

Zero out edx (some times):

xor eax, eax
xor edx, edx

xor eax, eax
cdq

replace with

4 bytes 3 bytes

6 bytes

4 bytes

4 bytes

3 bytes

Tip 5: Strings and their addresses

• Instead of jmp-call-pop technique, we can directly push bytes to the
stack

41

xor eax, eax
push eax
push 0x21756673 ; little-endian

0

“SFU!”mov ebx, esp ; ebx = 0xbfffea00
push eax
push ebx

0

0xbfffea00

0xbfffea00

mov ecx, esp ; ecx = 0xbfffe9f8

0xbfffe9f8

Recap: Requirements for Shellcode

• No zero bytes!

• Position-independent code (PIC)

• Doesn’t use absolute addresses

• Better: be as small as possible

42

Questions?

43

	Slide 1: Buffer Overflow
	Slide 2: Attacker Goal
	Slide 3: Buffer Overflows
	Slide 4: Buffer Overflows
	Slide 5: History: Morris Worm
	Slide 6: History: Morris Worm and Buffer Overflow
	Slide 7: Recent Incidents
	Slide 8: Recall: Process Memory Organization
	Slide 9: Overflow Types
	Slide 10: Stack Region: Function Call
	Slide 11: A Closer Look
	Slide 12: A Closer Look
	Slide 13: The func Stack Frame
	Slide 14: Let’s Take Control of a Program
	Slide 15: Example: Simple Web Server
	Slide 16: What if buf exceeds the 100 bytes?
	Slide 17: Example: Let’s Crash the Server
	Slide 18: What happened?
	Slide 19: What if buf contains bad code?
	Slide 20: Problem: Choosing Where to Jump
	Slide 21: Jumping into the Buffer
	Slide 22: Scenario 1 – Jump to Shellcode
	Slide 23: Scenario 1 – Jump to Shellcode
	Slide 24: Scenario 2 – JMP to Register (ret2reg)
	Slide 25: Scenario 2 – JMP to Register (ret2reg)
	Slide 26: Scenario 2 – JMP to Register (ret2reg)
	Slide 27: Scenario 2 – JMP to Register (ret2reg)
	Slide 28: Scenario 3 – JMP to ESP
	Slide 29: Scenario 3 – JMP to ESP
	Slide 30: Scenario 3 – JMP to ESP
	Slide 31: Scenario 3 – JMP to ESP
	Slide 32: Scenario 4 – JMP to different code path
	Slide 33: Recap: The NOP Sled (0x90)
	Slide 34: Recap: JMP using a register
	Slide 35: Tip 1: Copying Shellcode
	Slide 36: Tip 2: Relative Addressing Technique
	Slide 37: Relative Addressing Technique
	Slide 38: Tip 3: Enable Privileges
	Slide 39: Small Buffers
	Slide 40: Tip 4: Every Byte Matters (Examples)
	Slide 41: Tip 5: Strings and their addresses
	Slide 42: Recap: Requirements for Shellcode
	Slide 43: Questions?

