

1

Cybersecurity Lab II Lab 6

Return-oriented Programming

 Never use any of the provided code on a network connected to the Internet.

1. Prerequisites
(a) Disable address space randomization

$ sudo sysctl -w kernel.randomize_va_space=0

(b) Building the vulnerable C program

$ gcc -o prog -z noexecstack -fno-stack-protector prog.c

(c) Running the program

$./prog payload

Cybersecurity Lab II

Lab 06 -- Return-oriented Programming

2

2. Tasks
Your task is to build three ROP chains to perform specific operations. Recall that ROP chains are useful

when the stack region is not executable, and thus, the attacker cannot run shellcode from the stack. In this

lab, you can search for the ROP gadgets in the generated binary and its dependencies.

You should set the BUF_SIZE to be 300+x, where x is the least significant two digits in your SFU ID. If

these two digits are zeros, choose the next significant two digits.

Note 1: You should not use any automation tools to generate the ROP chains, but you may use tools to

search for gadgets.

Note 2: You need to explain in detail how you generate the ROP chains. Specifically, your lab report

should include all steps you performed to generate the ROP chains with sufficient explanations and

screenshots. For every generated chain, you need to list the gadgets you used in the right order. You

also need to explicitly mention the used tools to complete the lab tasks.

Note 3: None of the generated ROP chains should include zero bytes.

Task 1: Setting ebx Value [10%]

Your task is to create a ROP chain file called chain_1 to set the ebx value to 21 (0x15). Notice that

you need to zero out ebx first.

Note: You should not use inc ebx;

Task 2: Open a Shell [45%]

Your task is to generate a ROP chain file, called chain_2, to open a shell using the execve system call

with “/bin/sh” as an argument. Recall the steps you need to perform to invoke execve:

1. ebx = address of null-terminated string

2. ecx = NULL

3. edx = NULL

4. eax = 0x0b

5. Invoke “int 0x80” or “call gs:[0x10]”

Hint: Recall that a ROP chain should not push items to the stack. So, you need to think of another

segment to insert a string into without changing the stack!

Cybersecurity Lab II

Lab 06 -- Return-oriented Programming

3

Task 3: Open a Reverse Shell (ROP + Shellcode) [45%]

Assume that the binary is running at a victim machine. Your task is to generate a payload called chain_3

to start a reverse shell at the victim machine. The reverse shell should execute from a shellcode injected

to the stack. However, recall that we enabled the NX bit for the vulnerable binary!

Hint 1: You must bypass the NX bit using ROP with a mprotect call. Describe the correct call and how

you learned about it. Then, the following shellcode should start the reverse shell.

Hint 2: Recall that the execution model of ROP is different from that of Shellcode. So, after the ROP

chain is done, you need to find a way to move the eip to the beginning of the shellcode.

Note: To create a reverse shell, you may use an existing shellcode from online resources or other tools.

3. Submission
You need to submit:

(1) All source code files that you developed, and all ROP chain files that you produced: chain_1, chain_2 and

chain_3.

(2) A detailed lab report.

The files should be compressed in a single (.zip) archive. The code should compile and run without any errors.

