

1

Cybersecurity Lab II Lab 4

Format String Vulnerability

The main objective of this lab is to exploit multiple format string vulnerabilities.

 Never use any of the provided code on a network connected to the Internet.

1. Prerequisites
(a) Disable address space randomization

$ sudo sysctl -w kernel.randomize_va_space=0

(b) Building the vulnerable C program

$ gcc -o prog -z execstack -fno-stack-protector prog.c

(c) Running the program

$./prog $(cat payload)

Cybersecurity Lab II

Lab 04 -- Format String Vulnerability

2

2. Tasks
The provided C program has a format string vulnerability. Your task is to exploit multiple format string

vulnerabilities that we discussed in the lecture.

You should set the BUF_SIZE to be 100+x, where x is the least significant two digits in your SFU ID. If

these two digits are zeros, choose the next significant two digits.

To aid you with the tasks, the code of a generic payload generator is provided (called build_string.py).

For each of the tasks from 2 to 4, you will need to develop a different Python code based on that provided

code. In addition to a detailed lab report, all Python scripts and generated payload files need to be

submitted.

As usual, your lab report should include all steps you performed to generate the payload files with

sufficient explanations and screenshots.

Task 1: Inspect the Program [20%]

Your first task is to inspect the provided program and answer the following questions.

(a) What is the piece of code that may result in a format string vulnerability? Explain.

(b) Draw a simplified stack layout when the second printf function is invoked from the details

function. You also need to show where the buf array is located (i.e., what stack frame is it

located at?). Your drawing doesn’t need to show absolute addresses.

Task 2: Print Values from the Stack [20%]

Your task is to write a build_string_print.py that generates payload_print. When

build_string_print.py is called with

$ python3 build_string_print.py x

It should generate a payload that prints x bytes from the stack in a readable format. x is a positive integer.

Task 3: Print a Value from the Heap [20%]

Similar to the previous tasks, you need to write a python script called build_string_heap.py that

generates a payload_heap file.

Your task is to read the secret value from the heap. To help you with this task, the address of the variable

is given to you. If you succeed, the secret message should be printed on the screen.

Cybersecurity Lab II

Lab 04 -- Format String Vulnerability

3

Task 4: Modify a Value on the Stack [40%]

This task has four subtasks. For each subtask, you need to write a script called build_string_modifyX.py

to generate payload_modifyX, where X is the subtask number.

Subtask 1. You need to modify the value of the target variable to any arbitrary value.

Subtask 2. You need to modify the value of the target variable to be 0x400.

Subtask 3. You need to modify the value of the target variable to be 0x0904bc04.

Subtask 4. You need to modify the value of the target variable to be 0xff990000.

Challenges. For the third and fourth subtasks, the main challenges are to write a (i) large value, and (ii)

zero value to the target variable.

Solution Direction. For the first challenge, if you simply reuse the same idea from the second subtask,

then you will need to write millions or even billions of bytes on the screen. Obviously, this is not efficient

and it will take a lot of time to print these numbers of bytes! To address this challenge, you need to divide

the 4-byte value into two 2-byte values, and write each one of them separately to the right memory location.

This is because it’s more efficient to print up to 216 bytes than to print up to 232 ones. To do so, your

payload first needs to include two different addresses, each of which points to a different two-byte

component of the original target variable. This can be easily achieved as you know the address of the

4-byte value. Second, you need to take advantage of the length modifier in format strings while you’re

using %n. Length modifiers, e.g., %ln, %hn or others, would point to an argument of a specific length.

For example, the %ln length modifier instructs the printf function to point to a long argument. For

more details, read the printf man page.

For the second challenge, you need to find a way to write a zero value after the printf has already

written some number of bytes. You need to consider the size of two-byte components as well as number

representation.

3. Submission
You need to submit:

(1) All source code files that you developed, and all payload files that you produced.

(2) A detailed lab report.

The files should be compressed in a single (.zip) archive. The code should compile and run without any errors.

https://man7.org/linux/man-pages/man3/printf.3.html

