

1

Cybersecurity Lab II Lab 3

Buffer Overflow

The objectives are to:

(a) Optimize/prepare shellcode to exploit buffer overflow (BOF) vulnerabilities

(b) Analyze potential buffer overflow vulnerabilities in source code

(c) Exploit buffer overflow vulnerabilities using different techniques

 Never use any of the provided code on a network connected to the Internet.

1. Prerequisites
(a) Disable address space randomization

$ sudo sysctl -w kernel.randomize_va_space=0

(b) Running the vulnerable C program

$ gcc -o prog -z execstack -fno-stack-protector prog.c

(c) Creating a new payload (a startup Python script is provided)

$ python3 <code>.py

(d) Install ropper 1.13.5

Visit the ropper repository for installation steps: https://github.com/sashs/Ropper

https://github.com/sashs/Ropper

Cybersecurity Lab II

Lab 03 -- Buffer Overflow

2

Task 1: Optimizing the Shellcode [20%]

The bytecode produced from the labsh.asm program (used in Lab 02) will not be useful in exploiting

BOF vulnerabilities. Your task is to prepare a valid bytecode that can be used to exploit a BOF

vulnerability, and to minimize the size of the resulting bytecode as much as you can!

You can do this by writing an optimized Assembly code (call it labsh_opt.asm), and use the resulting

bytecode in the following tasks. You can inspect the bytecode by using objdump or gdb.

Questions

(a) Inspect the provided vuln_1.c program, why cannot the bytecode of labsh.asm be used to

exploit the BOF vulnerability in vuln_1.c?

(b) Explain every optimization technique you performed in labsh_opt.asm.

(c) What is the size of your bytecode (in bytes)?

Task 2: Exploiting a BOF vulnerability -- Jump to Shellcode [40%]

The provided vuln_1.c program has a BOF vulnerability. The program reads a text file called

shellcode_1 and copies its content to a buffer that we plan to overflow (buffer in function bof).

int bof(char *str)

{

 char buffer[BUF_SIZE];

 /* The following statement has a buffer overflow problem */

 strcpy(buffer, str);

 return 1;

}

Your task is to generate the contents of the shellcode_1 file to exploit the buffer overflow

vulnerability. In particular, your shellcode from Task 1 should be used in the payload. If the attack

succeeds, a new shell will be spawned during the normal flow of the program.

In this exploit, you need to jump to the shellcode and use NOP sleds.

(1) You should set the BUF_SIZE to be 25+x, where x is the least significant two digits in your SFU

ID. If these two digits are zeros, choose the next significant two digits. Different numbers will

result in different stack layouts. E.g., if your SFU ID is 400508678, the buffer size should be

(25+78). If your SFU ID is 400508600, the buffer size should be (25+86).

(2) We provided a simple Python script (generate_payload_1.py) that generates the shellcode.

(3) In generate_payload_1.py, complete the missing parts in the new file:

(a) Fill in the shellcode from Task 1

(b) How the shellcode_1 file is initialized

(c) The offset value offset, and

(d) The return address at content[offset+0]...content[offset+3].

Cybersecurity Lab II

Lab 03 -- Buffer Overflow

3

Note that, for the purpose of this task, the shellcode needs to be copied to the end of the generated payload.

Questions

(a) What is the effect of BUF_SIZE on your solution?

(b) Explain (with screenshots) the steps you made to calculate the offset value offset and the

return address.

(c) If the address space randomization is enabled, suggest a strategy to exploit the buffer overflow

vulnerability for this program.

Task 3: Exploiting a BOF vulnerability -- Jump to Register [40%]

Your task is to exploit the buffer overflow vulnerability in vuln_2.c by jumping to a general-purpose

register (i.e., not esp).

This task has two subtasks.

Subtask 1. Inspect the vuln_2.c program, and answer the following questions.

(a) Explain whether you can perform the jump-to-register technique for the vuln_2.c program.

Support your answer with proper screenshots from gdb.

(b) If you cannot, modify the bof function only in vuln_2.c. to enable exploiting BOF using

jump-to-register. In vuln_2.c, the BUF_SIZE should be identical to the one in Task 2.

(c) What register can be used to perform jump-to-register? Why? Support your answer with proper

screenshots from gdb.

Subtask 2. In this subtask, you need to generate the contents of the shellcode_2 file (using

generate_payload_2.py) to exploit the buffer overflow vulnerability. To calculate the return

address, you need to find the absolute address of the jump-to-register pattern (or gadget) in one of the

loaded libraries in your program. So, you need to perform the following:

● Find the base address of a loaded library using gdb. When running the program in gdb, you can

inspect the outputs of vmmap to check the base address of loaded libraries. You may choose any

loaded library.

● Use ropper to find the gadget offset inside a library. A gadget is the pattern that you want to

look for inside a given library, e.g., jmp <reg>.

The following figure shows a typical usage of ropper to find the gadget offset.

Cybersecurity Lab II

Lab 03 -- Buffer Overflow

4

Once you find the base address of the library and gadget offset, you can calculate the absolute address of

the gadget as base address + offset.

Questions

(a) Explain (with screenshots) the steps you made to calculate the offset value offset in

generate_payload_2.py and the return address.

(b) Does the exploit work if you copy the shellcode to the end of the payload? Explain.

3. Submission
You need to submit:

(1) All source code files that you developed.

(2) A detailed lab report. The PDF file should be named FirstName_LastName.pdf

The files should be compressed in a single (.zip) archive with the name FirstName_LastName.zip. The code should

compile and run without any errors.

