

1

Simon Fraser University

Cybersecurity Lab II
Lab 2

Shellcode Development

The goal of this lab is to implement sample Assembly programs using the two techniques we discussed in the

lecture and lab.

 Never use any of the provided code on a network connected to the Internet.

Prerequisites
To build an Assembly code: nasm -f elf32 prog.asm

To produce a binary: ld prog.o -o prog

To enable a writable code segment: ld --omagic prog.o -o prog

Notes:

● Your code should not maintain strings in the data segment.

● You are welcome to modify the code if needed as long as you show how to build and run it.

Task 1 Printing on the Screen [30%]
Your task is to implement two Assembly programs to print “Hello, world!” (with CRLF characters) to the standard

output. The first program should use the Relative Addressing technique, while the second one pushes string bytes

to the stack.

Startup code for both programs is provided (print_rel.asm and print_stk.asm), and you need to fill in the

missing parts.

Questions

(a) In print_stk.asm, explain how the line “push 0x000a0d21” works. Show a screenshot from gdb to

support your explanation.

(b) Also, in the same file, explain how you got the string address. Show a screenshot from gdb to support your

explanation.

Cybersecurity Lab II Lab 2 -- Shellcode Development

2

Task 2 Spawning a Shell [70%]

Startup Code (labsh.asm) [10%]

To spawn a new shell, the provided code builds arguments of execve to call the “/bin//sh” program.

Recall that the sys_execve interface is:

Currently, the code just spawns a new shell with no arguments to the new process or environment variables. That

is, the envp array is set to NULL, and the argv array contains two items: The first one is the address of the

command string, and the second one is NULL.

Your task is to build this program and show a screenshot of a successful run.

A valid screenshot should at least show:

1. The process number of both the calling shell and the spawned shell using “echo $$”.

2. The passed environment variables to the spawned shell using “/usr/bin/env”

Providing Arguments to /bin/sh [20%]

Your task is to provide additional arguments to the spawned shell. Specifically, in this task, your program needs to

run the following command: /bin/sh -c "ls -la"

In this new program (call it labsh_args.asm), the argv array should have the following four elements, all of

which need to be constructed on the stack. Modify labsh.asm and demonstrate your execution results.

argv[3] = 0
argv[2] = "ls -la"
argv[1] = "-c"
argv[0] = "/bin/sh"

Providing Env. Variables to /bin/sh [20%]

The third parameter for the execve system call is a pointer to the environment variable array, and it allows us to

pass environment variables to the program. In labsh.asm, we pass a null pointer to execve, so no environment

variable is passed to the program.

In this task, you will write a program called labsh_env.asm. When this program is executed and you run

/usr/bin/env inside the shell, it needs to show the following three environment variables:

$ /usr/bin/env
aaaa=1234
bbbb=5678
cccc=1234

To write such a shellcode, you need to construct an environment variable array on the stack, and store the address

of this array to the edx register, before calling execve. Basically, you first store the actual environment variable

strings on the stack. Each string has a format of name=value, and it is terminated by a zero byte. You need to get

the addresses of these strings. Then, you construct the environment variable array, also on the stack, and store the

Cybersecurity Lab II Lab 2 -- Shellcode Development

3

addresses of the strings in this array. The array should look like the following (the order of elements does not

matter):

env[3] = 0 // 0 marks the end of the array
env[2] = address to the "cccc=1234" string
env[1] = address to the "bbbb=5678" string
env[0] = address to the "aaaa=1234" string

Using the Relative Addressing Technique [20%]

In this task, you need to implement spawning a shell using the Relative Address technique. A startup code is

provided for you, and you need to complete the missing parts.

You need to provide a detailed explanation for each line of the code in labsh_rel.asm, and explain why this code

would successfully execute the /bin/sh program, how the argv array is constructed, etc. You need to include

screenshots while running gdb as well.

3. Submission
You are required to submit:

(1) All source code files that you developed.

(2) A detailed lab report.

The files should be compressed in a single (.zip) archive. The code should compile and run without any errors.

