
Cybersecurity Lab II

Course Project



Final Project: Objectives

• Learning new concepts

• Gaining hand-on experience

• Making an impact 

2



Final Project

• This is your opportunity to explore or dig deeper in a specific security-
related topic.

• Related to systems and networking topics

• Has to have an implementation component

• Highly recommended to discuss with me and/or in the discussion 
board

3



Checkpoints – Hard deadlines

• Feb 12th:
• Team formation

• Initial project idea

• Unsuitable project ideas may require resubmission in one week

• March 11th: 
• First project progress report

• Focused on helping you with feedback on project direction

4



Checkpoints – Hard deadlines

• March 25th:
• Second progress report

• Each group will send their progress and initial results

• April 8th: 
• Project demo/presentation session

• Use the feedback to finalize your project

• April 15th:
• Project code and report

5



Progress report structure

• Introduction: explain project direction, motivation and challenges

• Related work: what is the current state of the art on this problem? 
What will you compare your work with? 

• Proposed solution
• Overview

• Details

• Analysis

• Limitations

• Current progress on solution

6



Final Report Structure

• Similar to progress report structure, but should also have:

• Abstract

• Evaluation of proposed solution
• Define metrics

• Present results that cover possible counter-arguments

• Conclusion
• Future work/learned lessons

7



Project Ideas – Examples 

• Reproducing (complex) Attacks and Defenses

• Reproducing research papers (related to security)

• Implementing security-related tools

• New research ideas

• New attack/defense

• New architecture or component

8



Grading

• Two progress reports: 5% each
• Progress reports are loosely graded; main point is to get you feedback

• Presentation: 30%
• Graded on quality, delivery, communication

• Quality of work at this stage does matter as it is shown in the demo

• Final report: 20%

• Code deliverable: 40%, of which:
• Implementation: 25%. Produce working code that is well organized and 

documented, and easily reproducible

• Novelty: 15%. Produce an interesting result that surpasses prior work. 

9



Open Source Code: Guidelines

• If your project idea is implemented somewhere else:
• You cannot use that code; you need to implement it by yourself

• What type of libraries can I use?
• A library that doesn’t directly implement your main/code idea

• Helper utilities

• If in doubt, ask me.

10



Examples

My idea is to create a network mapping tool, can I use nmap?

No

My idea is to reproduce “Paper X”. I found its source code online, can I 
use it?

No

11



Examples

My idea is to improve “Paper X”. I found its source code online, can I 
use it?

Check with me first

My idea is to create a ML-based anomaly detection for IDS, can I use 
pytorch?

Okay

12



Reproducing Attacks and Defenses

• DNS Rebinding Attacks

• SDN-related Attacks

• The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links 

• Attacking the Brain: Races in the SDN Control Plane

• Bypassing Virtualization/Sandboxing

• Side-channel Attacks

13



Reproducing research papers

• Examples:
• BlindBox: Deep Packet Inspection over Encrypted Traffic

• Embark: Securely outsourcing middleboxes to the cloud

• The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links

• Attacking the Brain: Races in the SDN Control Plane

• …

14



Implement/improve security-related tools 

• One metric if you’re improving an existing tool: 
• your code is merged to a popular open source tool

• Security-related dev tools:
• Static and dynamic code analysis: Discover bugs and vulnerabilities

• Compiler instrumentation 

• Attack-based/enumeration tools:
• nmap

• ROPGadget

15



Implement/improve security-related tools 

• Defense-based tools:
• IDS, IPS, Firewall

• End user tools:
• Tor (privacy)

• VPN (and Wireguard)

• Security-related protocols

16



Project Ideas [A sample from Spring’20—’21]

• ROP gadget finder

• Virtual Private Networks

• DNS rebinding attacks

• Detecting and repairing control flow hijacking attacks

• Analyzing software source code for vulnerability detection

• Reproducing sandbox escape vulnerability

• eBPF-based intrusion detection engine

17



Other ideas

• New attack/defense 

• Security issues in serverless/container platforms

• Are vNICs secure?

• Detecting malicious IoT behavior (large-scale, distributed env.)

• Attacks based on traffic analysis, e.g., Website fingerprinting

• Detecting caching policies in web/video servers
• Find the worst-case scenario → launch DoS attack

• Recall the PHP hash collision attack!

• Security of self-driving vehicles 
• Example

18

https://www.wired.com/2017/04/ubers-former-top-hacker-securing-autonomous-cars-really-hard-problem/


Project Proposal (2—4 pages)

• Group members and Project title

• Problem definition
• Objective
• Scope
• Importance
• Challenges

• Initial idea/solution (or at least the approach)
• Precisely describe the outcome (or software artifacts).

• How you’re going to implement your solution

• Tech. stack: potential libraries and software to be used

• Detailed evaluation plan (e.g., setup, datasets, VMs, etc.)

• High-level plan (timeline, task breakdown, task assignment)

19


	Slide 1: Course Project
	Slide 2: Final Project: Objectives
	Slide 3: Final Project
	Slide 4: Checkpoints – Hard deadlines
	Slide 5: Checkpoints – Hard deadlines
	Slide 6: Progress report structure
	Slide 7: Final Report Structure
	Slide 8: Project Ideas – Examples 
	Slide 9: Grading
	Slide 10: Open Source Code: Guidelines
	Slide 11: Examples
	Slide 12: Examples
	Slide 13: Reproducing Attacks and Defenses
	Slide 14: Reproducing research papers
	Slide 15: Implement/improve security-related tools 
	Slide 16: Implement/improve security-related tools 
	Slide 17: Project Ideas [A sample from Spring’20—’21]
	Slide 18: Other ideas
	Slide 19: Project Proposal (2—4 pages)

