Course Project
Final Project: Objectives

• Learning new concepts

• Gaining hand-on experience

• Making an impact
Final Project

• This is your opportunity to explore or dig deeper in a specific security-related topic.

• Related to systems and networking topics

• Has to have an implementation component

• Highly recommended to discuss with me and/or in the discussion board
Checkpoints – Hard deadlines

• Feb 12th:
 • Team formation
 • Initial project idea
 • Unsuitable project ideas may require resubmission in one week

• March 11th:
 • First project progress report
 • Focused on helping you with feedback on project direction
Checkpoints – Hard deadlines

• March 25th:
 • Second progress report
 • Each group will send their progress and initial results

• April 8th:
 • Project demo/presentation session
 • Use the feedback to finalize your project

• April 15th:
 • Project code and report
Progress report structure

• Introduction: explain project direction, motivation and challenges
• Related work: what is the current state of the art on this problem? What will you compare your work with?
• Proposed solution
 • Overview
 • Details
 • Analysis
 • Limitations
• Current progress on solution
Final Report Structure

- Similar to progress report structure, but should also have:
 - Abstract
 - Evaluation of proposed solution
 - Define metrics
 - Present results that cover possible counter-arguments
 - Conclusion
 - Future work/learned lessons
Project Ideas – Examples

• Reproducing (complex) Attacks and Defenses
• Reproducing research papers (related to security)
• Implementing security-related tools
• New research ideas
 • New attack/defense
 • New architecture or component
Grading

• Two progress reports: 5% each
 • Progress reports are loosely graded; main point is to get you feedback

• Presentation: 30%
 • Graded on quality, delivery, communication
 • Quality of work at this stage does matter as it is shown in the demo

• Final report: 20%

• Code deliverable: 40%, of which:
 • Implementation: 25%. Produce working code that is well organized and documented, and easily reproducible
 • Novelty: 15%. Produce an interesting result that surpasses prior work.
Open Source Code: Guidelines

• If your project idea is implemented somewhere else:
 • You cannot use that code; you need to implement it by yourself

• What type of libraries can I use?
 • A library that doesn’t directly implement your main/code idea
 • Helper utilities

• If in doubt, ask me.
Examples

My idea is to create a network mapping tool, can I use nmap?

No

My idea is to reproduce “Paper X”. I found its source code online, can I use it?

No
Examples

My idea is to improve “Paper X”. I found its source code online, can I use it?

Check with me first

My idea is to create a ML-based anomaly detection for IDS, can I use pytorch?

Okay
Reproducing Attacks and Defenses

• DNS Rebinding Attacks

• SDN-related Attacks
 • The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links
 • Attacking the Brain: Races in the SDN Control Plane

• Bypassing Virtualization/Sandboxing

• Side-channel Attacks
Reproducing research papers

• Examples:
 • BlindBox: Deep Packet Inspection over Encrypted Traffic
 • Embark: Securely outsourcing middleboxes to the cloud
 • The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links
 • Attacking the Brain: Races in the SDN Control Plane
 • ...
Implement/improve security-related tools

- One metric if you’re improving an existing tool:
 - your code is merged to a popular open source tool

- Security-related dev tools:
 - Static and dynamic code analysis: Discover bugs and vulnerabilities
 - Compiler instrumentation

- Attack-based/enumeration tools:
 - nmap
 - ROPGadget
Implement/improve security-related tools

• Defense-based tools:
 • IDS, IPS, Firewall

• End user tools:
 • Tor (privacy)
 • VPN (and Wireguard)

• Security-related protocols
Project Ideas [A sample from Spring’20—’21]

• ROP gadget finder
• Virtual Private Networks
• DNS rebinding attacks
• Detecting and repairing control flow hijacking attacks
• Analyzing software source code for vulnerability detection
• Reproducing sandbox escape vulnerability
• eBPF-based intrusion detection engine
Other ideas

• New attack/defense
• Security issues in serverless/container platforms
• Are vNICs secure?
• Detecting malicious IoT behavior (large-scale, distributed env.)
• Attacks based on traffic analysis, e.g., Website fingerprinting
• Detecting caching policies in web/video servers
 • Find the worst-case scenario → launch DoS attack
 • Recall the PHP hash collision attack!
• Security of self-driving vehicles
 • Example
Project Proposal (2—4 pages)

• **Group members** and **Project title**

• **Problem** definition
 • Objective
 • Scope
 • Importance
 • Challenges

• Initial **idea/solution** (or at least the approach)
 • Precisely describe the **outcome** (or software artifacts).

• How you’re going to **implement** your solution

• Tech. stack: potential **libraries** and **software** to be used

• Detailed **evaluation** plan (e.g., setup, datasets, VMs, etc.)

• High-level **plan** (timeline, task breakdown, task assignment)