
Cybersecurity Lab II

Lab 3



Main Goals

• Optimize shellcode to exploit buffer overflow (BOF) vulnerabilities

• Analyze potential BOF vulnerabilities in source code

• Exploit BOF vulnerabilities using different techniques

2



Task 1: Optimize Shellcode

• The Assembly code for labsh.asm is provided. You need to:
• Analyze why it cannot be used to exploit BOF in a given C program

• Optimize the bytecode (shellcode) for labsh.asm program
1. Make it suitable for BOF

2. Reduce its size (as much as you can)

3



Task 2: Exploit BOF – NOP Sleds

• A vulnerable C code is given.

• You need to generate payload to 
exploit BOF (using NOP sleds)

• The shellcode is the one you 
optimized in Task 1

• Few notes:
• The C program copies a relatively 

large number of bytes

• The shellcode needs to be at the end 
of the payload

• You need to modify the BUF_SIZE in 
the C code

• Some randomness is added
4

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address

90 90 90 90
90 90 90 90

shellcode

90 90 90 90
90 90 90 90
90 90 90 90
90 90 90 90
90 90 90 90
90 90 90 90

payload



Task 3: Exploit BOF – JMP-to-REG

• A vulnerable C code is given.

• You need to generate payload to 
exploit BOF (using jmp-to-reg)

• The shellcode is the one you 
optimized in Task 1

5

Saved BP

Ret. Address

buf

Caller SF

str

printf

New Ret. Address
90 90 90 90
90 90 90 90

shellcode

jmp reg

1

2

90 90 90 90
90 90 90 90



Task 3: Exploit BOF – JMP-to-REG

Two subtasks:

(1) Analysis
• Analyze the C program

• (if needed) Modify the program to make it vulnerable to jmp-to-reg

• Determine what general-purpose register to jump to (not esp)

(2) Exploitation
• Determine the gadget address (using ropper and gdb)

• Generate a suitable payload

6



Questions?

7


	Slide 1: Lab 3
	Slide 2: Main Goals
	Slide 3: Task 1: Optimize Shellcode
	Slide 4: Task 2: Exploit BOF – NOP Sleds
	Slide 5: Task 3: Exploit BOF – JMP-to-REG
	Slide 6: Task 3: Exploit BOF – JMP-to-REG
	Slide 7: Questions?

