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Lab 3



Main Goals

e Optimize shellcode to exploit buffer overflow (BOF) vulnerabilities
* Analyze potential BOF vulnerabilities in source code

* Exploit BOF vulnerabilities using different techniques




Task 1: Optimize Shellcode

* The Assembly code for 1absh.asm is provided. You need to:
* Analyze why it cannot be used to exploit BOF in a given C program

 Optimize the bytecode (shellcode) for 1absh.asm program

1. Make it suitable for BOF
2. Reduce its size (as much as you can)




Task 2: Exploit BOF — NOP Sleds
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Task 3: Exploit BOF — JMP-to-REG
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Task 3: Exploit BOF — JMP-to-REG

Two subtasks:

(1) Analysis
* Analyze the C program

* (if needed) Modify the program to make it vulnerable to jmp-to-reg
* Determine what general-purpose register to jump to (not esp)

(2) Exploitation
e Determine the gadget address (using ropper and gdb)
* Generate a suitable payload




Questions?
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