
Cybersecurity Lab II

Lab 3



Main Goals

• Optimize shellcode to exploit buffer overflow (BOF) vulnerabilities

• Analyze potential BOF vulnerabilities in source code

• Exploit BOF vulnerabilities using different techniques
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Task 1: Optimize Shellcode

• The Assembly code for labsh.asm is provided. You need to:
• Analyze why it cannot be used to exploit BOF in a given C program

• Optimize the bytecode (shellcode) for labsh.asm program
1. Make it suitable for BOF

2. Reduce its size (as much as you can)
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Task 2: Exploit BOF – NOP Sleds

• A vulnerable C code is given.

• You need to generate payload to 
exploit BOF (using NOP sleds)

• The shellcode is the one you 
optimized in Task 1

• Few notes:
• The C program copies a relatively 

large number of bytes

• The shellcode needs to be at the end 
of the payload

• You need to modify the BUF_SIZE in 
the C code

• Some randomness is added
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Task 3: Exploit BOF – JMP-to-REG

• A vulnerable C code is given.

• You need to generate payload to 
exploit BOF (using jmp-to-reg)

• The shellcode is the one you 
optimized in Task 1
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Task 3: Exploit BOF – JMP-to-REG

Two subtasks:

(1) Analysis
• Analyze the C program

• (if needed) Modify the program to make it vulnerable to jmp-to-reg

• Determine what general-purpose register to jump to (not esp)

(2) Exploitation
• Determine the gadget address (using ropper and gdb)

• Generate a suitable payload
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Questions?
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