SFU SIMON FRASER UNIVERSITY Cybersecurity Lab Il
ENGAGING THE WORLD

Lab 3

Main Goals

e Optimize shellcode to exploit buffer overflow (BOF) vulnerabilities
* Analyze potential BOF vulnerabilities in source code

* Exploit BOF vulnerabilities using different techniques

Task 1: Optimize Shellcode

* The Assembly code for 1absh.asm is provided. You need to:
* Analyze why it cannot be used to exploit BOF in a given C program

 Optimize the bytecode (shellcode) for 1absh.asm program

1. Make it suitable for BOF
2. Reduce its size (as much as you can)

Task 2: Exploit BOF — NOP Sleds

e —

o printf
* Avulnerable C code is given.
* You need to generate payload to
exploit BOF (using NOP sleds) - 50 59 50 90
* The shellcode is the one you 90 96 96 90
timized in Task 1 90 90 90 90 buf
optimized in Tas o G G GE
, 90 90 90 90
* The C program COpleS d relatlvely New Ret. Address Ret. Address
large number of bytes 90 90 90 99 tr
* The shellcode needs to be at the end 90 96 90 90
Caller SF
of the payload | | N <hellcode
* You need to modify the BUF_SIZE in \
the C code

e Some randomness is added n

Task 3: Exploit BOF — JMP-to-REG

* A vulnerable C code is given. » Jmp reg

printf
* You need to generate payload to 2

exploit BOF (using jmp-to-reg)
* The shellcode is the one you

90 90 90 90 B

optimized in Task 1 90 90 90 90
buf
shellcode
" Saved BP
- New Ret. Address Ret. Address
96 90 90 90 str
99 90 990 90
Caller SF

Task 3: Exploit BOF — JMP-to-REG

Two subtasks:

(1) Analysis
* Analyze the C program

* (if needed) Modify the program to make it vulnerable to jmp-to-reg
* Determine what general-purpose register to jump to (not esp)

(2) Exploitation
e Determine the gadget address (using ropper and gdb)
* Generate a suitable payload

Questions?

	Slide 1: Lab 3
	Slide 2: Main Goals
	Slide 3: Task 1: Optimize Shellcode
	Slide 4: Task 2: Exploit BOF – NOP Sleds
	Slide 5: Task 3: Exploit BOF – JMP-to-REG
	Slide 6: Task 3: Exploit BOF – JMP-to-REG
	Slide 7: Questions?

