
Cybersecurity Lab II

Lab 2

Main Goals

• Develop Assembly programs:
• Print a string on the screen

• Spawn a new shell using execve

• Get familiar with two techniques: relative addressing and pushing
data into the stack.

• To get familiar with one technique to build a working shellcode (more
details next lab).

2

Activity 1: Print on Screen

• Startup code is provided for print_rel.asm and print_stk.asm

• You need to:
• Complete the missing parts

• Answer few questions about the program

3

Activity 1:
Relative
Addressing

_start:

?? ; (complete)

shellcode:

?? ; (complete)

mov eax, ?? ; (complete)opcode for write system call

mov ebx, ?? ; (complete) 1st arg is the fd

mov ecx, ?? ; (complete) 2nd arg is the str address

mov edx, 15 ; 3rd arg is len

int 0x80 ; system call interrupt

mov eax, 1 ; opcode for exit system call

mov ebx, 0 ; 1st arg, exit(0)

int 0x80 ; system call interrupt

saveme:

?? ; (complete)

msg db "Hello, world!", 0xA, 0xD
4

Activity 2: Spawn a new Shell

• A working startup code is provided that pushes data on stack, you
need to:
• Provide arguments to the spawned shell

• Provide environment variables to the spawned shell

5

Activity 2: Spawn a new Shell

• A startup code is provided that uses relative addressing, you need to:
• Complete the missing parts

• Answer few questions

6

/bin/sh* addr 0000

• You need to replace:
• * with a NULL byte

• AAAA with the address of the address of string

• BBBB with NULL bytes

• Why cannot we start with /bin/sh0AAAA0000?

pop esi

jmp call_addr

“/bin/sh*AAAABBBB”

Shellcode

call jmp_addr + 1

• Can a program modify the code segment?
• How can we solve this issue?

• mov [ebx+7], 0x00

7

/bin/sh* addr 0000

Questions?

8

	Slide 1: Lab 2
	Slide 2: Main Goals
	Slide 3: Activity 1: Print on Screen
	Slide 4: Activity 1: Relative Addressing
	Slide 5: Activity 2: Spawn a new Shell
	Slide 6: Activity 2: Spawn a new Shell
	Slide 7
	Slide 8: Questions?

