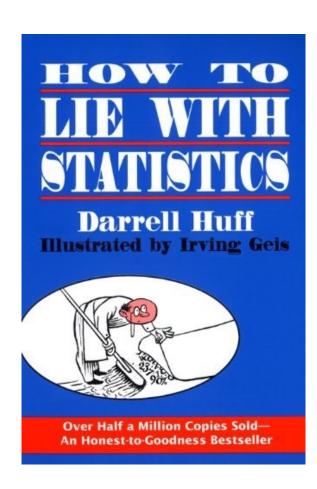
CMPT 733 – Big Data Programming II

Statistics (I)


Instructor
Course website
Slides by

Steven Bergner

https://coursys.sfu.ca/2024sp-cmpt-733-g1/pages/

Jiannan Wang & Steven Bergner

Why Should You Care?

There are three kinds of lies: lies, damned lies, and statistics

1.	The Sample with the Built-in Bias	<u>13</u>
2.	The Well-Chosen Average	29
3.	The Little Figures That Are Not There	39
4.	Much Ado about Practically Nothing	55
5.	The Gee-Whiz Graph	62
6.	The One-Dimensional Picture	68
7.	The Semiattached Figure	76
8.	Post Hoc Rides Again	89
9.	How to Statisticulate	102
10.	How to Talk Back to a Statistic	124

Simpson's paradox

Is UC Berkeley gender biased?

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

Simpson's paradox

Is UC Berkeley gender biased?

Donortmont	Ме	n	Won	nen
Department	Applicants	Admitted	Applicants	Admitted
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

Women tended to apply to competitive departments with low rates of admission

Outline

Statistical Thinking

Descriptive Statistics

Inferential Statistics

Outline

Statistical Thinking

Descriptive Statistics

Inferential Statistics

Statistical Thinking

1. Data is just a sample

2. You goal is to infer a population

3. Think about how to go "backwards" from the sample to the population

Example 1. Image Classification

Is it a dog or a cat?

Dataset: 1000 images collected

from the Web

Without Statistical Thinking

Treat the 1000 images as the population

- > Train a model on the data
- > Evaluate a model on the same data
- > Model accuracy: 95%

With Statistical Thinking

What is the population?

All the images in the Web

What is your dataset?

A sample of 1000 images drawn from the Web

What should you do?

- Split the dataset into a training dataset and a test dataset
- Train the model on the training dataset
- Evaluate the model on the test dataset

Example 2. Market Trend Analysis

What will be the market share of electric vehicles by 2025?

Dataset: Analysis of 5 years of sales data from the automotive industry

Without Statistical Thinking

Misinterpreting a Small Sample as the Entire Market

- > Count the number of people who intend to buy an electric vehicle, e.g., 60
- > Count the number of people who intend to buy a gasoline vehicle, e.g., 40
- > Incorrect Conclusion: Electric vehicles will represent 60% of all car sales

With Statistical Thinking

Understanding Market Predictions

What is the population?

All the consumers in the market for new vehicles

What is your dataset?

A sample of 1000 potential car buyers surveyed before a major auto show

Analysis result

Electric Vehicles: 60% ± 5%

<u>Assumption:</u> Consumer preferences remain consistent with the survey results until the auto show.

Gasoline Vehicles: 40% ± 5%

Summary

Statistical Thinking

- Sample, Population and Their Connection
- With vs. Without Statistical Thinking

Descriptive Statistics

Inferential Statistics

Outline

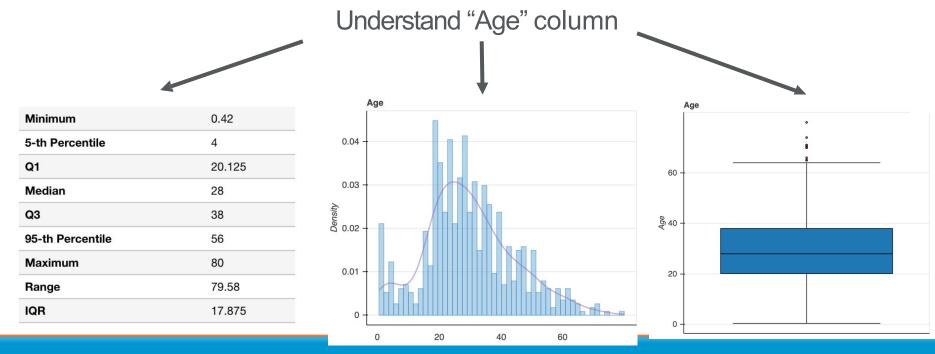
Statistical Thinking

Descriptive Statistics

Inferential Statistics

Descriptive vs. Inferential Statistics

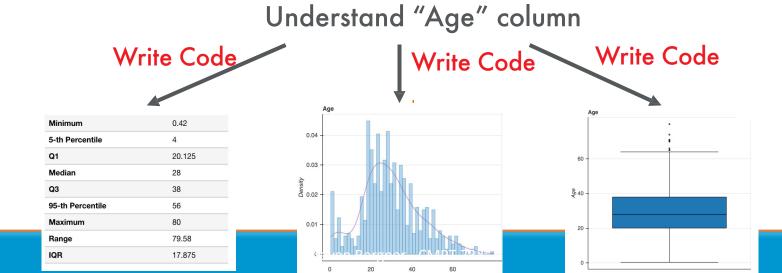
Descriptive Statistics: e.g., Median


- Why? Aim to understand the data
- How? Data summarization, data visualization, etc.

Inferential Statistics: e.g., A/B Testing

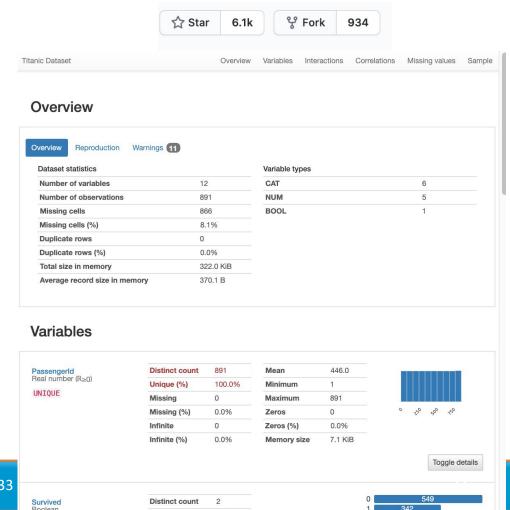
- Why? Aim to use the data (i.e., sample) to learn about a population
- How? Estimation, confidence intervals, hypotheses testing, etc.

Exploratory Data Analysis (EDA)


Understand data and discover insights via data visualization, data summarization, etc.

Current EDA Solutions in Python

Solution 1: Pandas + Matplotlib


- Hard to Use
 - <u>Beginner:</u> Need to know how to write plotting code
 - Expert: Need to write lengthy and repetitive code

Current EDA Solutions in Python

- Solution 2: Pandas-profiling
- Slow
- Hard to Customize

profile = ProfileReport(df, title="Pandas Profiling Report")

Correlation Analysis

Correlation

It is a measure of relationship between two variables

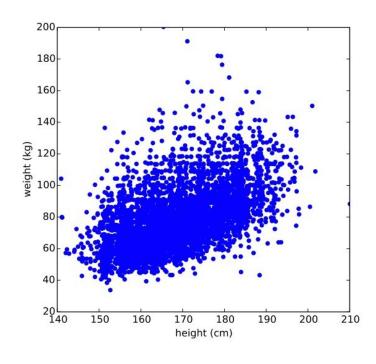
Why is correlation analysis useful?

- For understanding data better
- For making predictions better

Case Study: How to do correlation analysis

Height and weight are correlated

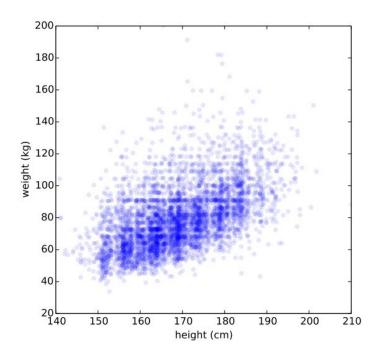
1	height	weight	age	male
2	151.765	47.8256065	63	1
3	139.7	36.4858065	63	Θ
4	136.525	31.864838	65	Θ
5	156.845	53.0419145	41	1
6	145.415	41.276872	51	Θ
7	163.83	62.992589	35	1
8	149.225	38.2434755	32	0


Source: Think Stats -- Exploratory Data Analysis in Python

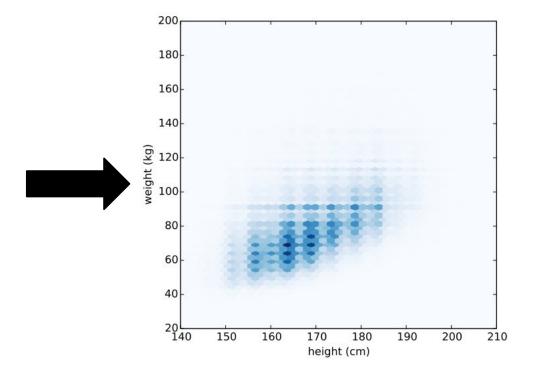
Idea 1. Visualization

Scatter Plot

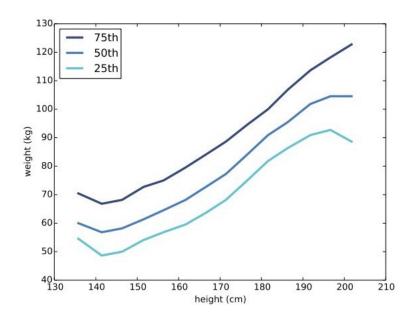
1	height	weight	age	male
2	151.765	47.8256065	63	1
3	139.7	36.4858065	63	0
4	136.525	31.864838	65	0
5	156.845	53.0419145	41	1
6	145.415	41.276872	51	0
7	163.83	62.992589	35	1
8	149.225	38.2434755	32	0



Scatter Plot (with transparency)


1	height	weight	age	male
2	151.765	47.8256065	63	1
3	139.7	36.4858065	63	0
4	136.525	31.864838	65	0
5	156.845	53.0419145	41	1
6	145.415	41.276872	51	0
7	163.83	62.992589	35	1
8	149.225	38.2434755	32	0

Hexbin Plot


1	height	weight	age	male
2	151.765	47.8256065	63	1
3	139.7	36.4858065	63	0
4	136.525	31.864838	65	0
5	156.845	53.0419145	41	1
5	145.415	41.276872	51	0
7	163.83	62.992589	35	1
8	149.225	38.2434755	32	0

Characterizing relationships

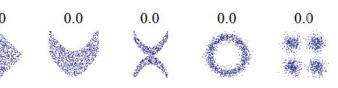
1	height	weight	age	male
2	151.765	47.8256065	63	1
3	139.7	36.4858065	63	0
4	136.525	31.864838	65	0
5	156.845	53.0419145	41	1
6	145.415	41.276872	51	0
7	163.83	62.992589	35	1
8	149.225	38.2434755	32	0

Idea 2. Correlation Coefficient

Steven Bergner - CMPT 733

Covariance

Covariance is a measure of the tendency of two variables to vary together.

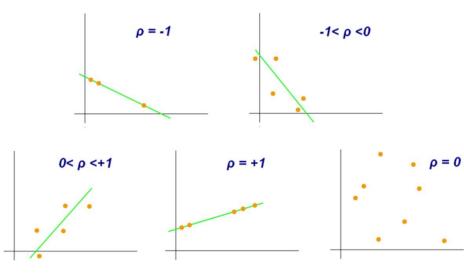

$$\mathrm{cov}(X,Y) = \mathrm{E}\left[(X - \mathrm{E}[X])(Y - \mathrm{E}[Y])
ight]$$

$$cov(X,Y) = E[XY] - E[X] E[Y]$$

Hard to interpret 113 kilogram-centimeters

34

Pearson's correlation

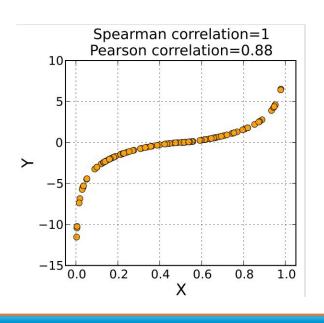

What about non-linear relationship?

Pearson's correlation is a measure of the linear relationship between two variables

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Easy to Interpret

- $[-1, 0) \rightarrow \text{Negative Correlated}$
- $(0,+1] \rightarrow$ Positive Correlated
- o -1 or +1 → Perfectly Correlated


Spearman's rank correlation

Spearman's rank correlation is a measure of monotonic relationship between two variables

$$r_s =
ho_{\mathrm{r}_X,\mathrm{r}_Y} = rac{\mathrm{cov}(\mathrm{r}_X,\mathrm{r}_Y)}{\sigma_{\mathrm{r}_X}\sigma_{\mathrm{r}_Y}}$$

Advantages

- Mitigate the effect of outliers
- Mitigate the effect of skewed distributions

Summary

Statistical Thinking

Descriptive Statistics

- Descriptive vs. Inferential Statistics
- Exploratory Data Analysis with DataPrep
- Correlation Analysis

Inferential Statistics

Outline

Statistical Thinking

Descriptive Statistics

Inferential Statistics

Estimation

Estimation

Problem statement

Estimate a numerical value associated with a population

Examples

- Estimate the percentage of the people in the US who will vote for Biden
- Estimate the median annual income of all households in the US

Example: Median Annual Income

How to estimate the median annual income of all households in the US?

- Randomly select 10,000 households from the US
- Report their median annual income: 50,000USD

BUT, we need to report something like

50,000 ±500 USD

A Naïve Solution

- Randomly select 10,000 households from the US
- Report their median annual income

Repeat this process for 100 times

50,000 49,600 50,200 ... 49,200

You have to survey 1,000,000 million households in total!

A Smart Solution: Bootstrapping

Key Idea: Resampling

Sample with replacement from the original data sample

Population: 1, 1, 8, 2, ... 3, 3

Sample: 3, 8, 1, 8, 3

Resample: 8, 3, 3, 3, 1

A Smart Solution: Bootstrapping

- Randomly select 10,000 households in Canada
- Draw a resample from the 10,000 households
- Report the median annual income of the resample

Repeat this process for 100 times

43

You do NOT need to survey any new household. ©

Notes on Bootstrapping

Start with a large random sample (at least 30)

•Replicate the resampling procedure as many times as possible (more than 1000 times)

Does not work for min/max

Conclusion

Statistical Thinking

- Sample, Population and Their Connection
- With vs. Without Statistical Thinking

Descriptive Statistics

- Descriptive vs. Inferential Statistics
- EDA with DataPrep.eda
- Correlation Analysis

Inferential Statistics

Estimation and Bootstrapping