TRANSFORMERS

CMPT 728/420

Introduction to Deep Learning

Oliver Schulte



OVERVIEW

Transformers are a state-of-the-art sequence-to-sequence model.

Used in many state-of-the-art NLP systems

E.g. BERT word embeddings (see bonus question on assignment)
ChatGPT = Chat Generative Pre-trained Transformer

Demos: https://transformer.huggingface.co

They transform

one sequence into another

Initial generic word embeddings to context-dependent word embeddings
Many moving parts

And many hyperparameters

We wiill focus on the fundamental new ideas
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https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://transformer.huggingface.co/

HIGH-LEVEL IDEA

Transformers use a stateless model
No (hidden) state summarizing previous observations
Complex but separate embedding of each input item at time t

When predicting output at target time t, access all embeddings at other times in
random-access manner

Attention weights for how important embeddings for other times are for the current
target time

Insight: Natural language aims to convey a set of facts
order of words is not so important

“In Korea, more than half the residents speak Korean”

CMPT 728 - Transformers



REVIEW:ATTENTION IN SEQ-2-SEQ

MODELS
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REVIEW:ATTENTION IN SEQ2SEQ

Basic Positional Attention Model for encoder-decoder RNNs

Each decoder step accesses each hidden state of the encoder.

The relevance of an input position to an input position is
represented by an attention weight.

Visualization
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https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

TOY EXAMPLE

revised hansards number
* Matching positions have higher weights
" 1/6 1/6 * Requires fixed windows to fix positions
hansards revisé numero I
I 1/2 116 116
2 1/6 1/3 1/6
3 116 116 1/3
4 1/6 1/6 1/3



SELF-ATTENTION

Single-Sequence Attention
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https://arxiv.org/abs/1706.03762

REVIEW: SINGLE-SEQUENCE MODELS

Key Challenge: Long-Range Dependencies
RNN: summarize all previous items in a hidden state

LSTM: store information in a special memory cell RNN:
Summarize
history

Korea More Than Half residents  speak Korean

CMPT 728 - Transformers °



SELF-ATTENTION

* Self-Attention: Random Access Memory Model
* Every item has access to all other items in the sequence

* Including future items

i More [ Than _|Half _|Of Al __|the |residents |speak | Korean_

General formula: Encoding for word i is encode(i) := > ; weight(ij) x value,
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SELF-ATTENTION EXAMPLE
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http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing

COGNITIVE SCIENCE PERSPECTIVE

A common model of human cognition posits a working memory

Similar to random-access memory in computers
Working memory contains a finite set of “elements”
Can relate each element to any other

May be a model of consciousness

Random access = items are a set, not a sequence

Seems especially appropriate for natural language
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https://arxiv.org/pdf/1709.08568.pdf

SELF-ATTENTION: WORD
ENCODING
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SELF-ATTENTION: CONTEXTUALIZED
ENCODING VIEW

High-level summary: given input sequence
Start with generic embeddings word,,...,word,

Update each embedding given the word’s context
Context = embeddings of other words

New encoding for word i is encode’(i) := ) ; weight(i,j) x encode;
New encoding = new context

Repeat encoding update (k times)
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ATTENTION WEIGHTS

For seqg-2-seq attention, we assigned weights to a pair (input
position, output position).

What are problems with this approach for self-attention?
Variable-length sequences —variable number of positions
Content is more important than position for relevance

Example:

In Korea, most people speak Korean
Most people in Korea speak Korean

How to solve these issues?
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CONTENT-BASED ATTENTION WEIGHTS

Let [word], [word)] be the embedding of two words in the input sequence.

How to measure their compatibility?

Recall that dot product - between two word embeddings represents semantic
similarity between two words

weight(word, word)= [word;] - [word] (?)

Problem: dot product is symmetric but relevance is not
Example:“In Korea, most residents speak Korean.”
"Korea” is very relevant to “Korean”

”Korean” not so relevant to “Korea”
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QUERY-KEY MODEL

Linear transform of each embedding:
Produce a query vector query; := W< [word,]

a key vector key; := WK [word]

Attention weight of word j for word i:
query; - key,

Standardize and normalize to probabilities weight(i,))

Visualization
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http://jalammar.github.io/illustrated-transformer/

WORD ENCODING

Also transform each embedding to value, := W' [word]

Encoding for word i is encode(i) := } ; weight(ij) x value;
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SELF-ATTENTION: SEQUENCE
ENCODING AND DECODING
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COMBINING WORD ENCODINGS

Each encoding vector encode(i) is given to the same
feed-forward network to produce z(i).

The encoding is repeated 6 times:
Produce a new €’(i) given the current z(0), z(1),...,z(n)
Input €’(i) to a feed-forward network to produce new z(i)

Visualization

Final Output: key, value; for each input position

CMPT 728 - Transformers


http://jalammar.github.io/illustrated-transformer/

REFINEMENTS

As if this were not complicated enough, you can also add

Attention heads: multiple transformation matrices W WX,
WY produce multiple encodings for each position

Position encoding: as described the encoding loses all
information about the position of the word.

Add a position encoding vector to each embedding [word]]

Normalize output values using layer normalization
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POSITIONAL ENCODING
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POSITIONAL ENCODING
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DECODING

The decoder uses attention for input positions and self-attention from previous
output positions
Let i range over input positions, j over output positions.
The query(j) vector is obtained from embedding [output_word )]
Then encode(j) := ) ; weight(ij) x value; + } ;.; weight(j’,j) x value;
The values and weights are computed using query(j), keys, and values as before.

We obtain a final output vector z(j) as before

A linear layer + softmax maps z(j) to a distribution over output words
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CONCLUSION

Self-attention is an alternative to RNN models (e.g. LSTM)
Key limitation: requires O(n?) weights for n items

In practice, have to limit input size to a max constant
Based on random access to all elements of the sequence

Information from different sequence elements is combined using
attention weights

Transformer uses self-attention to encode input sequence, and
to decode the output sequence

CMPT 728 - Transformers



