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Overview
� Rectified Linear Units

� Regularization
� Dropout
� Norm Constraint

� Adapting Step Sizes

� Batch Normalization
� Babysitting the Training Process

Deep Learning Training



Rectified Linear Units
A New Activation Function
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Vanishing Gradients
� Activation functions that approximate step functions have 

small gradients outside their center. 
� This is exacerbated by backpropagation across many layers: 

according to the chain rule, gradients are multiplied.
ØProblem for deep learning, recurrent neural networks

Deep Learning Training
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Problems with Sigmoid Activation 
Function
� Dense: typically all units are active for any given input.

� Vanishing gradient: as number of layers increase, the error 
derivative for each goes to 0.

ØDo not  use sigmoid for hidden nodes
� Hyperbolic tangent is better than sigmoid
� Usually Rectified Linear activation is best

� See tensor playground demo

Deep Learning Training
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Rectified Linear Unit
� f(x) = max(0,x)

� Gradient is trivial.

CC0, https://en.wikipedia.org/w/index.php?curid=48817276



Co-Adaptation and Regularization
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Local Minima and Local Gradients
� How does a neural network get stuck in a local minimum?

� Many reasons, but key phenomenon is that gradients are 
directions for single weights not sets of weights. 
� Definition of gradient for w: fix all other weights, consider 

depending of error function E on w in isolation.

� Example: XOR
� Moving weight for single feature does not help, need to move 

weight for both.

Deep Learning Training
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Local Minima and Co-Adaptation
� Because weights are changed one at a time, a bad value for w1

can lead to bad values for w2.
� See UBC tool demo neural.jar

� This is called co-adaptation. 
� Related to overfitting.
� Toy Example:

Deep Learning Training

w1 w2
Optimal Value 1 1

Local Minimum 8 -6

A common symptom of co-adaptation and overfitting are excessively 
large weight magnitudes. How can we address this?
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Regularization
� Add a term to loss function that penalizes large weights

minimize E(w) + λ||w||
- Need to set the trade-off parameter λ
� Very common in machine learning
� The norm constraint: Fix the length ||w|| of each weight 

vector to be less than a constant.

Deep Learning Training
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Dropout
� Model Averaging comes to Neural Nets

� Averaging Models is a good idea
� See boosting

Deep Learning Training
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Dropout in Neural Nets
1. Stochastic gradient descent: Cycle through each case.

2. For each case, randomly drop out some neurons.
1. Independently with probability p, e.g. 0.5.
2. Train only the weights for the remaining neurons.

3. After training, multiply the weights by p. Intuition:
1. A kind of average over the neural net for each case.
2. If p = 0.5, twice as many hidden units are present as during 

training.
Typically also use the norm constraint.
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Dropout Picture

https://medium.com/@vivek.yadav/why-dropouts-prevent-overfitting-in-deep-
neural-networks-937e2543a701



Step Size Adaptation
See normalization survey on canvas
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Gradients of Gradients
� Remember the driving example: Want to slow down getting 

close to the goal.
� Especially if gradients flip sign (left-right-left-right).
ØFast change in gradients → smaller steps.

� Formal Idea: Make step size the inverse of 2nd-order derivative.
� Newton Raphson Update Rule: 

x := x – ηf'(x)/f''(x) 

Deep Learning Training
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Analyzing Gradients
� Newton—Raphson is good

� But for many (millions) of parameters, cannot feasibly get all the 
2nd-order gradients (the Hessian).
� Nor can we invert the Hessian matrix.

� Instead use the trends in gradient sequence as estimates of 
curvature. 

� Many developments of this basic idea.
� Typically user specifies initial learning rate and method adapts as 

training proceeds
� We’ll look at the ADAM method (Adaptive Moment Estimation).

Deep Learning Training

https://ruder.io/optimizing-gradient-descent/index.html
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ADAM Intuitions
� Input: sequence of observed gradients g1,…,gt
1. Divide learning rate by observed variance/standard 

deviation.
Ø Variance replaces curvature in Newton-Raphson

2. Update with average of gradients seen so far (not current 
gradient)

Ø Intuitively, like the momentum of a moving object

Deep Learning Training
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Estimate Gradient Moments
� Input: sequence of observed gradients g1,…,gt
� Output: estimate exponentially discounted gradient average, 

(uncentered) standard deviation

� Decay factor β1 for average. E.g. for t = 3, β1 = 0.9
� m3= 0.9 x 0.9 x (1-0.9) g1 + 0.9 x (1-0.9) g2 +  (1-0.9) g3
� Common idea for time series

� Incremental Running Average Update:
mt = β1 mt-1 + (1- β1) gt

� Similar for variance with another decay factor
vt = β2 vt-1 + (1- β2) (gt)2

Deep Learning Training
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Update Formula
� Bias correction:

mt := mt /(1- [β1]t)
vt := vt /(1- [β2]t)

� wt := wt-1-η mt /[(vt)1/2+ ε)]

Deep Learning Training

Divide update 
by standard deviation

update by (estimated) 
average gradient



Batch Normalization
Normalization Survey on Canvas
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High-level Intuition
� From the point of view of hidden layers inside a deep 

network:
output activation of previous layer = input “data”

Øwhatever properties we want in input data è
properties we want in output activations

� one nice input data property was normalization
� means and variances on the same scale
� e.g. all data dimensions on the same scale (see preprocessing 

section)

Deep Learning Training
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Benefits of Normalized Activations
� avoid saturation

� less dependence on initial weight values
� some regularization: large values scaled back

Deep Learning Training
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Normalization Algorithm
For minibatch x1,..xm of data points

For each node xi

1. Find the activation values xij,.., xim for each data point
2. Normalize the activation values:

3. Scale and shift: 
where γ,β are learned during backpropagation

Deep Learning Training
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Conclusion
� Many tips and tricks to try, little theory or guarantees

� For output nodes:
� Use sigmoid + cross-entropy for classification
� Use linear + least-squares for regression

� For hidden nodes:
� Don’t use sigmoid
� Relu is good default
� Can try hyperbolic tangent

� Adapting the step size is a good idea
� Drop out and batch normalization sometimes help
� Regularization is a good idea (more next time)
Deep Learning Training


