

More on Training Deep Neural Networks

Oliver Schulte School of Computing Science Simon Fraser University Introduction to Deep Learning

Overview

- Rectified Linear Units
- Regularization
 - Dropout
 - Norm Constraint
- Adapting Step Sizes
- Batch Normalization
- Babysitting the Training Process

Rectified Linear Units

A New Activation Function

Vanishing Gradients

- Activation functions that approximate step functions have small gradients outside their center.
- This is exacerbated by backpropagation across many layers: according to the chain rule, gradients are multiplied.
 - Problem for deep learning, recurrent neural networks

4

Problems with Sigmoid Activation Function

- Dense: typically all units are active for any given input.
- Vanishing gradient: as number of layers increase, the error derivative for each goes to 0.
- > Do not use sigmoid for hidden nodes
- Hyperbolic tangent is better than sigmoid
- Usually Rectified Linear activation is best
- See tensor playground demo

Rectified Linear Unit

- f(x) = max(0,x)
- Gradient is trivial.

CC0, https://en.wikipedia.org/w/index.php?curid=48817276

Co-Adaptation and Regularization

Local Minima and Local Gradients

- How does a neural network get stuck in a local minimum?
- Many reasons, but key phenomenon is that gradients are directions for single weights <u>not sets of weights</u>.
 - Definition of gradient for w: fix all other weights, consider depending of error function E on w in isolation.
- Example: XOR
 - Moving weight for single feature does not help, need to move weight for both.

Local Minima and Co-Adaptation

- Because weights are changed one at a time, a bad value for w₁ can lead to bad values for w₂.
 - See UBC tool demo neural.jar
- This is called <u>co-adaptation</u>.
- Related to overfitting.
- Toy Example

e:		<i>w</i> ₁	w ₂
	Optimal Value	1	1
	Local Minimum	8	-6

A common symptom of co-adaptation and overfitting are excessively large weight magnitudes. How can we address this?

Regularization

- Add a term to loss function that penalizes large weights minimize E(w) + $\lambda |\, |\, w |\, |$
- Need to set the trade-off parameter $\boldsymbol{\lambda}$
- Very common in machine learning
- The <u>norm constraint:</u> Fix the length $||\mathbf{w}||$ of each weight vector to be less than a constant.

Dropout

- Model Averaging comes to Neural Nets
- Averaging Models is a good idea
 - See boosting

Dropout in Neural Nets

- 1. Stochastic gradient descent: Cycle through each case.
- 2. For each case, randomly drop out some neurons.
 - 1. Independently with probability p, e.g. 0.5.
 - 2. Train only the weights for the remaining neurons.
- 3. After training, multiply the weights by p. Intuition:
 - 1. A kind of average over the neural net for each case.
 - 2. If p = 0.5, twice as many hidden units are present as during training.

Typically also use the norm constraint.

https://medium.com/@vivek.yadav/why-dropouts-prevent-overfitting-in-deep-neural-networks-937e2543a701

Step Size Adaptation

See normalization survey on canvas

Gradients of Gradients

- Remember the driving example: Want to slow down getting close to the goal.
 - Especially if gradients flip sign (left-right-left-right).
 - \succ Fast change in gradients \rightarrow smaller steps.
- Formal Idea: Make step size the inverse of 2nd-order derivative.
- Newton Raphson Update Rule: $x := x - \eta f'(x) / f''(x)$

Analyzing Gradients

- Newton—Raphson is good
- But for many (millions) of parameters, cannot feasibly get all the 2nd-order gradients (the Hessian).
 - Nor can we invert the Hessian matrix.
- Instead use the trends in gradient sequence as estimates of curvature.
- <u>Many developments</u> of this basic idea.
 - Typically user specifies initial learning rate and method adapts as training proceeds
 - We'll look at the ADAM method (Adaptive Moment Estimation).

ADAM Intuitions

- Input: sequence of observed gradients g_1, \ldots, g_t
- Divide learning rate by observed variance/standard deviation.
 - Variance replaces curvature in Newton-Raphson
- 2. Update with average of gradients seen so far (not current gradient)
 - Intuitively, like the momentum of a moving object

Estimate Gradient Moments

- Input: sequence of observed gradients g_1, \ldots, g_t
- Output: estimate *exponentially discounted* gradient average, (uncentered) standard deviation
- Decay factor β_1 for average. E.g. for t = 3, $\beta_1 = 0.9$
 - $m_3 = 0.9 \ge 0.9 \ge (1-0.9) \ge g_1 + 0.9 \ge (1-0.9) \ge g_2 + (1-0.9) \ge g_3$
 - Common idea for time series
- Incremental Running Average Update:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

• Similar for variance with another decay factor $v_t = \beta_2 v_{t-1} + (1 - \beta_2) (g_t)^2$

Update Formula

• Bias correction:

$$m_t := m_t / (1 - [\beta_1]^t)$$
$$v_t := v_t / (1 - [\beta_2]^t)$$

•
$$w_t := w_{t-1} - \eta m_t / [(v_t)^{1/2} + \mathcal{E})]$$

update by (estimated) average gradient

Divide update by standard deviation

Batch Normalization

Normalization Survey on Canvas

High-level Intuition

• From the point of view of hidden layers inside a deep network:

output activation of previous layer = input "data"

- ➤ whatever properties we want in input data → properties we want in output activations
- one nice input data property was normalization
 - means and variances on the same scale
 - e.g. all data dimensions on the same scale (see preprocessing section)

Benefits of Normalized Activations

- avoid saturation
- less dependence on initial weight values
- some regularization: large values scaled back

Normalization Algorithm

For minibatch $\mathbf{x}_1, \dots \mathbf{x}_m$ of data points

For each node x^i

- 1. Find the activation values $x_{i}^{i}, ..., x_{m}^{i}$ for each data point
- 2. Normalize the activation values:

mean_i := 1 /
$$m \sum_{j=0}^{m} x_j^i$$

var_i := 1 / $m \sum_{j=0}^{m} (x_j^i - \text{mean}_i)^2$

$$\hat{x}_i := \frac{x_i - \text{mean}_i}{\sqrt{\text{var}_i + \varepsilon}}$$

3. Scale and shift: $y_i := \gamma \hat{x}_i + \beta$ where γ, β are learned during backpropagation

Conclusion

- Many tips and tricks to try, little theory or guarantees
- For output nodes:
 - Use sigmoid + cross-entropy for classification
 - Use linear + least-squares for regression
- For hidden nodes:
 - Don't use sigmoid
 - Relu is good default
 - Can try hyperbolic tangent
- Adapting the step size is a good idea
- Drop out and batch normalization sometimes help
- Regularization is a good idea (more next time) Deep Learning Training