
More on Training Deep Neural
Networks

Oliver Schulte

School of Computing Science

Simon Fraser University

Introduction to Deep Learning

2

Overview
� Rectified Linear Units

� Regularization
� Dropout
� Norm Constraint

� Adapting Step Sizes

� Batch Normalization
� Babysitting the Training Process

Deep Learning Training

Rectified Linear Units
A New Activation Function

Deep Learning Training

4

Vanishing Gradients
� Activation functions that approximate step functions have

small gradients outside their center.
� This is exacerbated by backpropagation across many layers:

according to the chain rule, gradients are multiplied.
ØProblem for deep learning, recurrent neural networks

Deep Learning Training
−5 0 5

0

0.5

1

5

Problems with Sigmoid Activation
Function
� Dense: typically all units are active for any given input.

� Vanishing gradient: as number of layers increase, the error
derivative for each goes to 0.

ØDo not use sigmoid for hidden nodes
� Hyperbolic tangent is better than sigmoid
� Usually Rectified Linear activation is best

� See tensor playground demo

Deep Learning Training

6

Rectified Linear Unit
� f(x) = max(0,x)

� Gradient is trivial.

CC0, https://en.wikipedia.org/w/index.php?curid=48817276

Co-Adaptation and Regularization

Deep Learning Training

8

Local Minima and Local Gradients
� How does a neural network get stuck in a local minimum?

� Many reasons, but key phenomenon is that gradients are
directions for single weights not sets of weights.
� Definition of gradient for w: fix all other weights, consider

depending of error function E on w in isolation.

� Example: XOR
� Moving weight for single feature does not help, need to move

weight for both.

Deep Learning Training

9

Local Minima and Co-Adaptation
� Because weights are changed one at a time, a bad value for w1

can lead to bad values for w2.
� See UBC tool demo neural.jar

� This is called co-adaptation.
� Related to overfitting.
� Toy Example:

Deep Learning Training

w1 w2
Optimal Value 1 1

Local Minimum 8 -6

A common symptom of co-adaptation and overfitting are excessively
large weight magnitudes. How can we address this?

10

Regularization
� Add a term to loss function that penalizes large weights

minimize E(w) + λ||w||
- Need to set the trade-off parameter λ
� Very common in machine learning
� The norm constraint: Fix the length ||w|| of each weight

vector to be less than a constant.

Deep Learning Training

11

Dropout
� Model Averaging comes to Neural Nets

� Averaging Models is a good idea
� See boosting

Deep Learning Training

12

Dropout in Neural Nets
1. Stochastic gradient descent: Cycle through each case.

2. For each case, randomly drop out some neurons.
1. Independently with probability p, e.g. 0.5.
2. Train only the weights for the remaining neurons.

3. After training, multiply the weights by p. Intuition:
1. A kind of average over the neural net for each case.
2. If p = 0.5, twice as many hidden units are present as during

training.
Typically also use the norm constraint.

Deep Learning Training

13

Dropout Picture

https://medium.com/@vivek.yadav/why-dropouts-prevent-overfitting-in-deep-
neural-networks-937e2543a701

Step Size Adaptation
See normalization survey on canvas

Deep Learning Training

15

Gradients of Gradients
� Remember the driving example: Want to slow down getting

close to the goal.
� Especially if gradients flip sign (left-right-left-right).
ØFast change in gradients → smaller steps.

� Formal Idea: Make step size the inverse of 2nd-order derivative.
� Newton Raphson Update Rule:

x := x – ηf'(x)/f''(x)

Deep Learning Training

16

Analyzing Gradients
� Newton—Raphson is good

� But for many (millions) of parameters, cannot feasibly get all the
2nd-order gradients (the Hessian).
� Nor can we invert the Hessian matrix.

� Instead use the trends in gradient sequence as estimates of
curvature.

� Many developments of this basic idea.
� Typically user specifies initial learning rate and method adapts as

training proceeds
� We’ll look at the ADAM method (Adaptive Moment Estimation).

Deep Learning Training

https://ruder.io/optimizing-gradient-descent/index.html

17

ADAM Intuitions
� Input: sequence of observed gradients g1,…,gt
1. Divide learning rate by observed variance/standard

deviation.
Ø Variance replaces curvature in Newton-Raphson

2. Update with average of gradients seen so far (not current
gradient)

Ø Intuitively, like the momentum of a moving object

Deep Learning Training

18

Estimate Gradient Moments
� Input: sequence of observed gradients g1,…,gt
� Output: estimate exponentially discounted gradient average,

(uncentered) standard deviation

� Decay factor β1 for average. E.g. for t = 3, β1 = 0.9
� m3= 0.9 x 0.9 x (1-0.9) g1 + 0.9 x (1-0.9) g2 + (1-0.9) g3
� Common idea for time series

� Incremental Running Average Update:
mt = β1 mt-1 + (1- β1) gt

� Similar for variance with another decay factor
vt = β2 vt-1 + (1- β2) (gt)2

Deep Learning Training

19

Update Formula
� Bias correction:

mt := mt /(1- [β1]t)
vt := vt /(1- [β2]t)

� wt := wt-1-η mt /[(vt)1/2+ ε)]

Deep Learning Training

Divide update
by standard deviation

update by (estimated)
average gradient

Batch Normalization
Normalization Survey on Canvas

Deep Learning Training

21

High-level Intuition
� From the point of view of hidden layers inside a deep

network:
output activation of previous layer = input “data”

Øwhatever properties we want in input data è
properties we want in output activations

� one nice input data property was normalization
� means and variances on the same scale
� e.g. all data dimensions on the same scale (see preprocessing

section)

Deep Learning Training

22

Benefits of Normalized Activations
� avoid saturation

� less dependence on initial weight values
� some regularization: large values scaled back

Deep Learning Training

23

Normalization Algorithm
For minibatch x1,..xm of data points

For each node xi

1. Find the activation values xij,.., xim for each data point
2. Normalize the activation values:

3. Scale and shift:
where γ,β are learned during backpropagation

Deep Learning Training

meani :=1/m xj
ii

j=0

m

∑
vari :=1/m (x j

ii

j=0

m

∑ −meani)
2

yi := γ x̂i +β
x̂i :=

xi −meani
vari+ε

24

Conclusion
� Many tips and tricks to try, little theory or guarantees

� For output nodes:
� Use sigmoid + cross-entropy for classification
� Use linear + least-squares for regression

� For hidden nodes:
� Don’t use sigmoid
� Relu is good default
� Can try hyperbolic tangent

� Adapting the step size is a good idea
� Drop out and batch normalization sometimes help
� Regularization is a good idea (more next time)
Deep Learning Training

