
RECURRENT NEURAL NETWORKS

Introduction to Deep Learning

CMPT 728/420

Oliver Schulte

MODELS FOR SEQUENTIAL DATA

THE MARKOV ASSUMPTION

• Given the current (vector of) inputs, the next output is
independent of the previous outputs.
P(yt|xt,xt-1,...,x0)=P(yt|xt).

• Example: Basketball Prediction (open in Chrome)

• k-order Markov process: next observation depends on fixed-
length part of previous history.
Øsliding window model

Øconvolutional neural net

http://projects.yisongyue.com/bballpredict/

MARKOV CHAIN MODEL

• At each point, the system is in a state st
• Given the state, the next output is independent of observations

P(yt|st,xt,xt-1,...,x0)=P(yt|st)

• Current state depends only on current observation and previous state
P(st|st-1,xt,xt-1,...,x0)=P(st|st-1, xt)

HIDDEN MARKOV MODEL (HMM)

1. The output at time t is independent of previous inputs given the (right)
hidden state at time t
P(yt|ht, xt,xt-1,...,x0)=P(yt|ht).

2. The hidden state at time t is independent of previous inputs given the
previous hidden state at time t-1
P(ht|ht-1,xt,xt-1,...,x0) = P(ht|ht-1)

• Number of hidden states k is specified in advance.

• Hidden state ≈ cluster of history.

A Markov chain model where the state is not observed. Like a cluster.

RECURRENT NEURAL NET (RNN)

• Basic Idea: Like HMM where
Hidden State èActivation Vector of hidden nodes.

• P(yt|ht, xt,xt-1,...,x0)=P(yt|ht) where ht is the activation vector of hidden
states
P(ht|ht-1,xt,xt-1,...,x0) = P(ht|ht-1)

• In terms of NN activations:

Hidden unit activation depends on its own previous activation

• If output = next observation, can use to generate sequences (yt =xt+1)

• Generation Demo

hi (t) = gi (wimh
m (t −1)+

m
∑ wiih

i (t −1))

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

UNROLLED RNN

/HFWXUH����� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ /HFWXUH����� ��)HE�������

&KDUDFWHU�OHYHO
ODQJXDJH�PRGHO
H[DPSOH

9RFDEXODU\�
>K�H�O�R@

([DPSOH�WUDLQLQJ
VHTXHQFH�
³KHOOR´

7

Rnn examples

stanford-rnns.pdf

LSTMS AND PROGRAMS

RNNS AND LONG-RANGE DEPENDENCIES

• Problem: The hidden units have to remember information. But when does past
information become relevant to present prediction?

• Example: “In Korea, more than half of all the residents speak Korean”.

ØRNNs have trouble learning long-range dependencies

• More technically, we have the vanishing/exploding gradient problem in unrolling.

• Roughly, temporal chain rule è product of gradients

• gradients < 1 èproduct close to 0

• gradients > 1 èproduct explodes

LONG SHORT-TERM MEMORY (LSTM)

• Motivation: improve ability to learn long-range dependencies.

• Complicated Model, intuitions:
• Introduce special hidden units called “memory cells”.

• Content of memory cells is carried from past to future on a “special track”.

• More precisely: the current content of a memory cell has linear dependence on its previous content è
gradients neither vanish nor explode.

• What should be put into a memory cell? – “Input gates” learn to fill them.

• When is the content of a memory cell relevant? – “Output gates” learn when to use it.

• What if the content in our precious memory cells is no longer relevant? – “Forget gates” learn when to erase them.

LSTM CONNECTION DIAGRAM

cell output

a.

,/'
,/'

b. cell input
memory cell

MEMORY CELLS AND VARIABLES

• One way to think of a memory cell is that it is a probabilistic version of a
variable in a traditional program.

• For a traditional program variable, you can assign it new values, retrieve the
value when needed, update the value.

• A := 5
begin
....
end
if A > 4 then output ...

PROCESSING KOREAN EXAMPLE

1. cell := empty /* initialize memory cell */
2. while not end_of_sequence

1. current_word := read_next_word
2. previous_cell := cell

3. if input context is right
cell := current_word /*e.g. after “In” store “Korea”
else
cell := previous_cell /*copy previous value*/

4. if output context is right
use cell to predict /* e.g. after “speak” predict “Korean” */

“In Korea, more than half of all the residents speak Korean”.

LSTM PROGRAM WITH DETERMINISTIC GATES

1. cell := empty /* initialize memory cell */
2. while not end_of_sequence

1. current_word := read_next_word
2. previous_cell := cell

3. compute input_gate, forget_gate, output_gate activations using previous hidden node
activations
/* like an RNN */

4. compute candidate_memory using previous hidden node activations
/*without using previous_cell */
/* like an RNN */

5. if input_gate is on
cell := candidate_memory
elseif forget_gate is on
cell := empty
else cell := previous_cell

6. if output_gate is on, predict using current cell activation, current hidden node activations
/* like an RNN */

INPUT AND FORGET GATES
4.6. LONG SHORT-TERM MEMORY 89

Figure 4.9: The architecture of LSTMs

The problem with standard RNNs is that while the goal is to remember
things from far back, in practice they seem to forget quickly. In Figure 4.9
everything in the dotted box corresponds to a single RNN unit. Obviously
LSTMs elaborate the architecture quite significantly. First, note that we
have shown one copy of an LSTM in a back-prop-though-time diagram. So
on the left we have information coming in from processing the previous word
(using two tensors of information rather than one). At the bottom we have
the next word coming in. On the right we have two tensors going out to
inform the next time unit and, as in plain RNNs, we have this information
going “up” in the diagram to predict the next word and the loss (upper
right-hand side).

The goal is to improve the RNN’s memory of past events by training it
to remember the important stu↵ and forget the rest. To this end, LSTMs
pass two versions of the past. The “o�cial” selective memory is at the top
and a more local version at the bottom. The top memory timeline is called
the cell state and abbreviated c. The lower line is called h.

Figure 4.9 introduces several new connectives and activation functions.
First, we see that the memory line is modified at two locations before being
passed on to the next time unit. They are labeled times (X), and plus (+).
The idea is that memories are removed at the times unit, and added at the
plus unit.

15

forgetting

inputting

output

SEMI-FORMAL DEFINITIONS (BAKKER 2001)

• Recall the RNN recurrence

• Applies to hidden units and input/output/forget gates (ignoring current input xt for now).

sc (t) = [hinputc (t)× gc (wcmh
m (t −1)

m
∑)]+[hforgetc (t)× sc (t −1)]

� The new memory cell contents is
[input factor x previous input activations] + [forgetting factor x previous content]

• The new memory cell output is the output gate x cell activation

hc (t) = houtc (t)× gc (s
c (t))

hi (t) = gi (wimh
m (t −1)+

m
∑ wiih

i (t −1))

GATED RECURRENT UNIT

• Several variations on the LSTM gates have been developed.

• Especially popular is GRU

• Intuition: replace “input” and “forget” by “update”

17

GRU EQUATIONS

• New content h’t = tanh(Wxt + rt ⊙Uht-1)

18

Transform current
observation xt

Transform previous hidden
state ht-1

Reset gate for
previous hidden state

• Update hidden state ht = zt ⊙ht-1 + (1- zt)⊙h’t

With probability zt
keep previous hidden state

With probability 1-zt
adopt new content

• Reset gates rt and update gates zt are trainable function of previous hidden
state and current input

CONCLUSION

• Hidden state at time t = summary of data up to time t

• Hidden layer in NN = distributed continuous representation of hidden state

• Recurrent NN: hidden state at time t-1 feeds into hidden state at time t

• Powerful method for learning with sequential data

• Problem: long-range dependencies and the vanishing gradient problem

• Possible solutions: gating with essentially linear updates (LSTMs, GRU)

19

