NORMALIZING FLOWS

Oliver Schulte

Simon Fraser University
CMPT 728

Introduction to Deep Learning

OVERVIEW AND MAIN IDEA

Normalizing Flows 2/21

EXAMPLES: CONDITIONAL GENERATION

conditional generative models

Normalizing Flows 3/21

RECAP GENERATIVE MODELLING:
NEURAL NETWORK APPROACH

Input random vector z to neural net

X
Typically from a Gaussian bell curve distribution ?

Network maps Z to output vector X
Decoder Network

Intuitively, the output should be like the observations x ?
Z

p(Z) = Gaussian bell curve

Normalizing Flows 4/21

EXACT LOG-LIKELIHOOD

Loss function for input x = - In(P(x))
The negative log-likelihood is the standard loss for generative models X
In the decoder architecture]

P(x) =, 1(f2) = %) p(2) dz (oo vt

1

| (f(z) = x) returns | if the decoder maps random z to x, 0 o.w.

Integral is intractable

p(Z) = Gaussian bell curve

VAE approach: approximate integral

Normalizing flow: solve integral exactly assuming that f is invertible

Normalizing Flows 5/21

GAUSSIAN EXAMPLE

4
1.5
3_
° 1.0+ .’. .0 =. °s .o.
2} f —_ o %
Z) — XS
. | @) ,
® o 0.5¢
1| sor T8, z/10+2/||z|| . .
... °e A N LY e > b
of S o Lo % 4 0.0}
.o 'Y ‘. o °
:o‘ o.."; ..0. .o
-1} . .‘ o ° (] . —0.5}
., S el ° %
2t
—-1.0p e 8 000 q® _o°
o, °°%
-3} °
s/ -os 0.0 05 1.0 1.5
T3 2 1 o 1 2 3 4

Samples from Gaussian distribution of 2D

P(Z)

Samples from output distribution
P(X)

Since f is invertible, for each output X, there is a unique f!(z) that generates it.

Normalizing Flows

6/21

PROS AND CONS

We can compute the log-likelihood of a data point exactly

See below for more details

Source space Z and target space X must have some
dimensionality — no dimensionality reduction/encoding

Can be addressed to some extent

Normalizing Flows

7/21

COMPUTING THE LIKELIHOOD FOR

INVERTIBLE TRANSFORMATIONS

The change of variable formula

Normalizing Flows 8/21

INVERTING PROBABILITY
DISTRIBUTIONS

What is the right way to compute the probability of a data point x=f(z)?

l.e.,

Want q(x)=q(f(z)) given p(z)
First try: 9*(x) = p(z) = p(f'(x))

Does not quite work because the g*(x) numbers don’t add up to I.

Need |, q(x) dx = I, can fix by setting q(x) = p(f-'(x))/ C for suitable constant C

But how to compute C!

Normalizing Flows

9/21

CHANGE OF VARIABLES FORMULA

Theorem Let

Z be a source univariate variable with density function p(z)

T: Z—X be an invertible transformation of z-values to

target x-values
Then q(x) = p(T'(x)) |dx/dz|"!

Normalizing Flows

10/21

CHANGE OF MULTIPLE VARIABLES
FORMULA

Theorem Let

Z be a source vector variable with density function p(Z)

T:Z—X be an invertible transformation of z-values to

target x-values
Then q(x) = p(T'(x)) |det(V,T(2))|"

where det(V,T(z)) is the Jacobian of the transformation

Normalizing Flows

11/21

ILLUSTRATION

Transforming a uniform
random variable into
another uniform variable

q(x)
1
3
0

X

4
p(2)
1 x:=Tk)=3z+1

0

1 Z

Normal |Z| ng FIOWS Eric Jang, Tutorial on Normalizing Flows

q(x)

video

[SSR I

L

()

0

Z dz

p(2)dz = g(x)dx

q(x) = p(2)

dz ‘
dx

12/21

https://www.youtube.com/watch?v=i7LjDvsLWCg

LEARNING ISSUES

Normalizing Flows 13/21

LEARNING INVERTIBLE
TRANSFORMATIONS

Given: dataset 9 := {x,X,,X3, ...

Maximize the exact log-likelihood

learn the density g(x)

X,)~ g(x)

Must be able to compute
Jacobian T
Determinant of Jacobian VT

Inverse of T

Since z=T"'(x,)

Normalizing Flows

choose a simple source density p(z)
use maximum likelihood

ﬁQ(Xi) = ﬁp(zi)
i=1 i=1

-1
det(V,T(z;))

-1

A

T := arg max Z
gma gp()

det(V,T(z;))

T := are max lo z)—1o
gma ; gp(z;) — log

det(VZT(zi)) ‘

14/21

TRIANGULAR INCREASING MAPS

Typically learn a sequence of invertible transformations
T Ty

Increases expressive power

Triangular increasing maps learn a sequence where each
transformation uses one more input variable z;

Makes the Jacobian and determinants easy to compute

Normalizing Flows 15/21

ILLUSTRATION OF INCREASING
TRIANGULAR MAPS

T:RY— R
_aTl _
.xl = TI(ZI) a_Zl 0 0
Xy = Tz(Zl, Zz) iy & 0

V T = 621 022
x5 = T5(2)5 25 %3) S

oT, 0T, oT,

o 2 soc oz,

Xg = Td(Zl’ 20y L35 +ees Zd)

triangular : T’ is a function of 2, %, ..., 3; increasing :7; is increasing w.r.t 7;

J
M

—>0

triangular maps 0z;

inverse and Jacobian are easy to compute

Normalizing Flows 16/21

TRIANGULAR MAPS ARE UNIVERSAL

Theorem (Paraphrase) For a fixed variable ordering z,,z,,..., z4
there always exists a unique increasing triangular map T: Z— X that
transforms a source density p(z) to a target density q(x)

Bogachev,V. et. al. Triangular Transformation of Measures, Sbornik:
Mathematics, 2005

Normalizing Flows

17/21

BIG PICTURE

—(
—®
| 2

z~ p(2) Ly § x ~ q(x)
2 1—* f —»

learn T by maximizing likelihood

n

min Z [_ logp(T~'(x))) + ZJ: log ajTj(T‘l(Xi))]

i=1

Marzouk,Y. et.al. Sampling via Measure Transport:An Introduction, Springer, 2016 18/21

AUTO-REGRESSIVE FLOW MODELS

Can always rewrite a joint density q(x) as
q(X)=q(X;) X q(Xa[x;) X ... X q(Xg|X<q)
Think about a “sequence” x,x,,...,X4

Learn a sequence of transformations T ,..,Ts.t.
Each T, models the conditional density q(xi|x<;)

E.g. with Gaussians like in a VAE

Normalizing Flows 19/21

AUTO-REGRESSIVE FLOW WITH
GAUSSIANS

q(x) = q,(x)) - @00 [x7) - oo gy | xoy)

JAANE N

N (uy,07) N (s, 03) N (g 07)

_’@ ,/\ xy =o0y-21+pu = Ty(z))
_'@ A\ Xy = 05(29) " 2 +M2(Z1) =Tz ;21)

>
|

Tl
}] I
Z T2

S
G

Zd —>I—>. /\L xd—O'd(Z<d) Zd+iud(z<d) _Td(zd Z<d)

24

Normalizing Flows

20/21

SUMMARY

Normalizing flow key idea: map random inputs to generated
outputs via an invertible function

Can compute likelihood of observed inputs x exactly using
change-of-variables theorem

But need to compute for learned mapping |) inverse 2) Jacobian
3) determinant of Jacobian

This is possible if we use increasing triangular maps (without
loss of expressive power)

Demos

21/21

Normalizing Flows

https://openai.com/blog/glow/

