NORMALIZING FLOWS

Oliver Schulte

Simon Fraser University
CMPT 728

Introduction to Deep Learning



OVERVIEW AND MAIN IDEA
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EXAMPLES: CONDITIONAL GENERATION

conditional generative models
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RECAP GENERATIVE MODELLING:
NEURAL NETWORK APPROACH

Input random vector z to neural net

X
Typically from a Gaussian bell curve distribution ?

Network maps Z to output vector X
Decoder Network

Intuitively, the output should be like the observations x ?
Z

p(Z) = Gaussian bell curve

Normalizing Flows 4/21



EXACT LOG-LIKELIHOOD

Loss function for input x = - In(P(x))
The negative log-likelihood is the standard loss for generative models X
In the decoder architecture ]

P(x) =, 1(f2) = %) p(2) dz (oo vt

1

| (f(z) = x) returns | if the decoder maps random z to x, 0 o.w.

Integral is intractable

p(Z) = Gaussian bell curve

VAE approach: approximate integral

Normalizing flow: solve integral exactly assuming that f is invertible
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GAUSSIAN EXAMPLE
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Samples from Gaussian distribution of 2D

P(Z)

Samples from output distribution
P(X)

Since f is invertible, for each output X, there is a unique f!(z) that generates it.
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PROS AND CONS

We can compute the log-likelihood of a data point exactly

See below for more details

Source space Z and target space X must have some
dimensionality — no dimensionality reduction/encoding

Can be addressed to some extent
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COMPUTING THE LIKELIHOOD FOR

INVERTIBLE TRANSFORMATIONS

The change of variable formula
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INVERTING PROBABILITY
DISTRIBUTIONS

What is the right way to compute the probability of a data point x=f(z)?

l.e.,

Want q(x)=q(f(z)) given p(z)
First try: 9*(x) = p(z) = p(f'(x))

Does not quite work because the g*(x) numbers don’t add up to I.

Need |, q(x) dx = I, can fix by setting q(x) = p(f-'(x))/ C for suitable constant C

But how to compute C!
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CHANGE OF VARIABLES FORMULA

Theorem Let

Z be a source univariate variable with density function p(z)

T: Z—X be an invertible transformation of z-values to

target x-values
Then q(x) = p(T'(x)) |dx/dz|"!
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CHANGE OF MULTIPLE VARIABLES
FORMULA

Theorem Let

Z be a source vector variable with density function p(Z)

T:Z—X be an invertible transformation of z-values to

target x-values
Then q(x) = p(T'(x)) |det(V,T(2))|"

where det(V,T(z)) is the Jacobian of the transformation
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ILLUSTRATION

Transforming a uniform
random variable into
another uniform variable

q(x)
1
3
0

X

4
p(2)
1 x:=Tk)=3z+1

0

1 Z

Normal |Z| ng FIOWS Eric Jang, Tutorial on Normalizing Flows

q(x)

video

[SSR I

L

()

0

Z dz

p(2)dz = g(x)dx

q(x) = p(2)
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https://www.youtube.com/watch?v=i7LjDvsLWCg

LEARNING ISSUES
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LEARNING INVERTIBLE
TRANSFORMATIONS

Given: dataset 9 := {x,X,,X3, ...

Maximize the exact log-likelihood

learn the density g(x)

X, )~ g(x)

Must be able to compute
Jacobian T
Determinant of Jacobian VT

Inverse of T

Since z=T"'(x,)

Normalizing Flows

choose a simple source density p(z)
use maximum likelihood

ﬁQ(Xi) = ﬁp(zi)
i=1 i=1

-1
det(V,T(z;))

-1

A

T := arg max Z
gma gp( )

det(V,T(z;))

T := are max lo z)—1o
gma ; gp(z;) — log

det( VZT(zi)) ‘
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TRIANGULAR INCREASING MAPS

Typically learn a sequence of invertible transformations
T Ty

Increases expressive power

Triangular increasing maps learn a sequence where each
transformation uses one more input variable z;

Makes the Jacobian and determinants easy to compute
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ILLUSTRATION OF INCREASING
TRIANGULAR MAPS
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triangular maps 0z;

inverse and Jacobian are easy to compute
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TRIANGULAR MAPS ARE UNIVERSAL

Theorem (Paraphrase) For a fixed variable ordering z,,z,,..., z4
there always exists a unique increasing triangular map T: Z— X that
transforms a source density p(z) to a target density q(x)

Bogachev,V. et. al. Triangular Transformation of Measures, Sbornik:
Mathematics, 2005
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BIG PICTURE
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learn T by maximizing likelihood

n

min Z [_ logp(T~'(x))) + ZJ: log ajTj(T‘l(Xi))]

i=1
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AUTO-REGRESSIVE FLOW MODELS

Can always rewrite a joint density q(x) as
q(X)=q(X;) X q(Xa[x;) X ... X q(Xg|X<q)
Think about a “sequence” x,x,,...,X4

Learn a sequence of transformations T ,..,Ts.t.
Each T, models the conditional density q(xi|x<;)

E.g. with Gaussians like in a VAE
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AUTO-REGRESSIVE FLOW WITH
GAUSSIANS
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SUMMARY

Normalizing flow key idea: map random inputs to generated
outputs via an invertible function

Can compute likelihood of observed inputs x exactly using
change-of-variables theorem

But need to compute for learned mapping |) inverse 2) Jacobian
3) determinant of Jacobian

This is possible if we use increasing triangular maps (without
loss of expressive power)

Demos
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https://openai.com/blog/glow/

