
NORMALIZING FLOWS

Oliver Schulte

Simon Fraser University

CMPT 728

Introduction to Deep Learning

2/21

OVERVIEW AND MAIN IDEA

3/21

EXAMPLES: CONDITIONAL GENERATION

conditional generative models

courtesy: wimbledon courtesy: 9GAG

4/21

RECAP GENERATIVE MODELLING:
NEURAL NETWORK APPROACH

• Input random vector z to neural net

• Typically from a Gaussian bell curve distribution

• Network maps z to output vector x

• Intuitively, the output should be like the observations x

5/21

EXACT LOG-LIKELIHOOD

• Loss function for input x = - ln(P(x))

• The negative log-likelihood is the standard loss for generative models

• In the decoder architecture
P(x) ≈ ∫z 1(f(z) = x) p(z) dz
• 1(f(z) = x) returns 1 if the decoder maps random z to x, 0 o.w.

• Integral is intractable

• VAE approach: approximate integral

• Normalizing flow: solve integral exactly assuming that f is invertible

6/21

GAUSSIAN EXAMPLE

Figure 2: Given a random variable z with one distribution, we can create
another random variable X = g(z) with a completely different distribution.
Left: samples from a gaussian distribution. Right: those same samples
mapped through the function g(z) = z/10 + z/||z|| to form a ring. This is
the strategy that VAEs use to create arbitrary distributions: the deterministic
function g is learned from data.

can sample directly from P(X) (without performing Markov Chain Monte
Carlo, as in [14]).

To solve Equation 1, there are two problems that VAEs must deal with:
how to define the latent variables z (i.e., decide what information they
represent), and how to deal with the integral over z. VAEs give a definite
answer to both.

First, how do we choose the latent variables z such that we capture latent
information? Returning to our digits example, the ‘latent’ decisions that the
model needs to make before it begins painting the digit are actually rather
complicated. It needs to choose not just the digit, but the angle that the digit
is drawn, the stroke width, and also abstract stylistic properties. Worse, these
properties may be correlated: a more angled digit may result if one writes
faster, which also might tend to result in a thinner stroke. Ideally, we want
to avoid deciding by hand what information each dimension of z encodes
(although we may want to specify it by hand for some dimensions [4]). We
also want to avoid explicitly describing the dependencies—i.e., the latent
structure—between the dimensions of z. VAEs take an unusual approach to
dealing with this problem: they assume that there is no simple interpretation
of the dimensions of z, and instead assert that samples of z can be drawn
from a simple distribution, i.e., N (0, I), where I is the identity matrix. How

5

Figure 2: Given a random variable z with one distribution, we can create
another random variable X = g(z) with a completely different distribution.
Left: samples from a gaussian distribution. Right: those same samples
mapped through the function g(z) = z/10 + z/||z|| to form a ring. This is
the strategy that VAEs use to create arbitrary distributions: the deterministic
function g is learned from data.

can sample directly from P(X) (without performing Markov Chain Monte
Carlo, as in [14]).

To solve Equation 1, there are two problems that VAEs must deal with:
how to define the latent variables z (i.e., decide what information they
represent), and how to deal with the integral over z. VAEs give a definite
answer to both.

First, how do we choose the latent variables z such that we capture latent
information? Returning to our digits example, the ‘latent’ decisions that the
model needs to make before it begins painting the digit are actually rather
complicated. It needs to choose not just the digit, but the angle that the digit
is drawn, the stroke width, and also abstract stylistic properties. Worse, these
properties may be correlated: a more angled digit may result if one writes
faster, which also might tend to result in a thinner stroke. Ideally, we want
to avoid deciding by hand what information each dimension of z encodes
(although we may want to specify it by hand for some dimensions [4]). We
also want to avoid explicitly describing the dependencies—i.e., the latent
structure—between the dimensions of z. VAEs take an unusual approach to
dealing with this problem: they assume that there is no simple interpretation
of the dimensions of z, and instead assert that samples of z can be drawn
from a simple distribution, i.e., N (0, I), where I is the identity matrix. How

5

Samples from Gaussian distribution of 2D
P(Z)

Samples from output distribution
P(X)

f(z) =
z/10+z/||z||

• Since f is invertible, for each output x, there is a unique f-1(z) that generates it.

7/21

PROS AND CONS

+ We can compute the log-likelihood of a data point exactly

+ See below for more details

- Source space Z and target space X must have some
dimensionality → no dimensionality reduction/encoding

- Can be addressed to some extent

8/21

COMPUTING THE LIKELIHOOD FOR
INVERTIBLE TRANSFORMATIONS

The change of variable formula

9/21

INVERTING PROBABILITY
DISTRIBUTIONS

• What is the right way to compute the probability of a data point x=f(z)?
I.e.,

• Want q(x)=q(f(z)) given p(z)

• First try: q*(x) = p(z) = p(f-1(x))

• Does not quite work because the q*(x) numbers don’t add up to 1.

• Need ∫x q(x) dx = 1, can fix by setting q(x) = p(f-1(x))/ C for suitable constant C

• But how to compute C?

10/21

CHANGE OF VARIABLES FORMULA

Theorem Let

• Z be a source univariate variable with density function p(z)

• T: Z→X be an invertible transformation of z-values to
target x-values

• Then q(x) = p(T-1(x)) |dx/dz|-1

11/21

CHANGE OF MULTIPLE VARIABLES
FORMULA

Theorem Let

• Z be a source vector variable with density function p(Z)

• T: Z→X be an invertible transformation of z-values to
target x-values

• Then q(x) = p(T-1(x)) |det(∇ZT(z))|-1
where det(∇ZT(z)) is the Jacobian of the transformation

12/21

ILLUSTRATION

conversation of probability mass

0

0

1

1
3

p(z)

q(x)

z

x

dz

dx

p(z)dz = q(x)dx

q(x) = p(z) dz
dxEric Jang, Tutorial on Normalizing Flows

0

0

1

1

1

4

1
3

p(z)

q(x)

z

x

x := T(z) = 3z + 1

Transforming a uniform
random variable into

another uniform variable

video

https://www.youtube.com/watch?v=i7LjDvsLWCg

13/21

LEARNING ISSUES

14/21

LEARNING INVERTIBLE
TRANSFORMATIONS

• Maximize the exact log-likelihood

• Must be able to compute

• Jacobian T

• Determinant of Jacobian ∇ZT
• Inverse of T
• Since zi=T-1(xi)

recipe for learning

Given: dataset ! := {x1, x2, x3, …, xn} ∼ q(x)

learn the density q(x)

choose a simple source density p(z)

use maximum likelihood

n

∏
i=1

q(xi) =
n

∏
i=1

p(zi) det(∇zT(zi))
−1

T̂ := arg max
T

n

∏
i=1

p(zi) det(∇zT(zi))
−1

T̂ := arg max
T

n

∑
i=1

log p(zi) − log det(∇zT(zi))

But…..
what are � ?zi

zi = T−1(xi)
so we need the inverse T−1

computing determinant is
computationally expensive

triangular maps

computation of inverse and Jacobian must be cheap

15/21

TRIANGULAR INCREASING MAPS

• Typically learn a sequence of invertible transformations
T1,..,Tk

• Increases expressive power

• Triangular increasing maps learn a sequence where each
transformation uses one more input variable zi

ØMakes the Jacobian and determinants easy to compute

16/21

ILLUSTRATION OF INCREASING
TRIANGULAR MAPSincreasing triangular maps

x1 = T1(z1)
x2 = T2(z1, z2)
x3 = T3(z1, z2, z3)

xd = Td(z1, z2, z3, …, zd)

∇zT =

∂T1
∂z1

0 … 0
∂T2
∂z1

∂T2
∂z2

… 0
⋮ ⋮ ⋱ ⋮

∂Td

∂z1

∂Td

∂z2
… ∂Td

∂zd

triangular maps
inverse and Jacobian are easy to compute

T : ℝd → ℝd

triangular : Tj is a function of z1, z2, …, zj increasing :Tj is increasing w.r.t zj

∂Tj

∂zj
> 0

Bogachev, V. et. al. Triangular Transformation of Measures, Sbornik: Mathematics, 2005

Theorem (paraphrase) : there always exists a unique* increasing
triangular map that transforms a source density to a target density

* for a fixed ordering

17/21

TRIANGULAR MAPS ARE UNIVERSAL

• Theorem (Paraphrase) For a fixed variable ordering z1,z2,…, zd
there always exists a unique increasing triangular map T: Z→ X that
transforms a source density p(z) to a target density q(x)

• Bogachev, V. et. al. Triangular Transformation of Measures, Sbornik:
Mathematics, 2005

18/21

BIG PICTURE
framework

z1

T1
x1

z2

T2
x2

zd

Td
xd

z ∼ p(z) x ∼ q(x)

min
T

n

∑
i=1

[− log p(T−1(xi)) + ∑
j

log ∂jTj(T−1(xi))]
learn T by maximizing likelihood

Marzouk, Y. et.al. Sampling via Measure Transport: An Introduction, Springer, 2016

19/21

AUTO-REGRESSIVE FLOW MODELS

• Can always rewrite a joint density q(x) as
q(x)=q(x1) x q(x2|x1) x … x q(xd|x<d)

• Think about a “sequence” x1,x2,…,xd

ØLearn a sequence of transformations T1,..,Td s.t.
Each Ti models the conditional density q(xi|x<i)

• E.g. with Gaussians like in a VAE

20/21

AUTO-REGRESSIVE FLOW WITH
GAUSSIANSAR with Gaussian conditionals

z1

T1
x1

z1 x1

z2

T2
x2

z2 x2

x1 = σ1 ⋅ z1 + μ1 =: T1(z1)

x2 = σ2(z1) ⋅ z2 + μ2(z1) := T2(z2 ; z1)

zd

Td
xd

zd xd

xd = σd(z<d) ⋅ zd + μd(z<d) := Td(zd ; z<d)

q(x) = q1(x1) ⋅ q2(x2 |x1) ⋅ … ⋅ qd(xd |x<d)

"(μ1, σ2
1) "(μ2, σ2

2) "(μd, σ2
d)

Kingma, et.al. Improved Variational Inference with Inverse Autoregressive Flow, NeurIPS, 2016

21/21

SUMMARY

• Normalizing flow key idea: map random inputs to generated
outputs via an invertible function

• Can compute likelihood of observed inputs x exactly using
change-of-variables theorem

• But need to compute for learned mapping 1) inverse 2) Jacobian
3) determinant of Jacobian

• This is possible if we use increasing triangular maps (without
loss of expressive power)

• Demos

https://openai.com/blog/glow/

