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Neural Networks

¢ Neural networks arise from attempts to model
human/animal brains

® Many models, many claims of biological plausibility
e We will focus on multi-layer perceptrons
* Mathematical properties rather than biological plausibility




Uses of Neural Networks

® Pros

Good for continuous input variables.

General continuous function approximators.

Highly non-linear.

Learn features.

Good to use in continuous domains with little knowledge:
® When you don’t know good features.
® You don’t know the form of a good functional model.

e Cons

¢ Not interpretable, “black box”.
® Learning is slow.
® Good generalization can require many datapoints.
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Function Approximation Demos

e Home Value of Hockey State https://user-images.
githubusercontent.com/22108101/
28182140-eb64b49%9a-67bf-11e7-97aa-046298£721e5.

Jpg

¢ Function Learning Examples (open in Google Chrome with
Applet extension) http://neuron.eng.wayne.edu/
bpFunctionApprox/bpFunctionApprox.html


https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html

Applications

There are many, many applications.

World-Champion Backgammon Player.
http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
No Hands Across America Tour.
http://www.cs.cmu.edu/afs/cs/usr/tjochem/
www/nhaa/nhaa_home_page.html

Digit Recognition with 99.26% accuracy.

Speech Recognition
http://research.microsoft.com/en—-us/news/
features/speechrecognition-082911.aspx
Translation http://translate.google.com

ChatGPT chat .openai.com


http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://translate.google.com
chat.openai.com
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Neurons
Model of an individual neuron j
¢ Pass input in; through a non-linear activation function to
get output a; = g(in;)
e For non-input nodes, the input is the weighted linear sum
of connected node activations + bias wy,:

n
il’lj: E W,‘jai
i=0

from Russell and Norvig, AIMA2e
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Neurons
Model of an individual neuron j
¢ Pass input in; through a non-linear activation function to
get output a; = g(in;)
e For non-input nodes, the input is the weighted linear sum
of connected node activations + bias wy,:

n
ll’lj = E w,-jai
i=0

ag=1 = o(in;
0 W\ a;= g(in))
Input Input  Activation Output
Links Function Function ~ OUtPut Links

from Russell and Norvig, AIMA2e
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Activation Functions

e Can use a variety of activation functions
® Sigmoidal (S-shaped)
¢ Logistic sigmoid 1/(1 + exp(—a)) (useful for binary
classification)
® Hyperbolic tangent tanh
Radial basis function a; = >°,(x; — w;)?
Softmax
® Useful for multi-class classification
Hard Threshold
® Rectified Linear Unit (deep learning)

e Should be differentiable for gradient-based learning (later)
e Can use different activation functions in each unit
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Activation Functions Visualized

0.5 0.5

864202468 642002456
Left Threshold
Middle Logistic sigmoid Logistic(x) =

1
T+exp(—x)
maps a real number to a probability

Right Logistic regression Logistic(w e x)
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Network of Neurons

o &,

(a) (b)
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Function Composition

Think logic circuits

BOGEY hy(,,3)
0.8
0.6
04
0.2

0

Two opposite-facing sigmoids = ridge. Two ridges = bump.
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Hidden Units As Feature Extractors

L Lt
E &

il
LT

learned input-to-hidden weights

mEm

® 64 input nodes
® 2 hidden units
e 2x learned weight vector at hidden unit
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Image Analysis Tasks

Classification Retrieval

firebo
drilling platform [

beach wagan gill
fire engine || dead-man's-fingers

[Krizhevsky 2012]
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Neural Net Learned Features
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Measuring Training Error

¢ Given a specified network structure, how do we set its
parameters (weights)?
® As usual, we define a criterion to measure how well our
network performs, optimize against it
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Measuring Training Error

Given a specified network structure, how do we set its
parameters (weights)?

® As usual, we define a criterion to measure how well our
network performs, optimize against it

Training data are (x,,t,)
Corresponds to neural net with multiple output nodes

Given a set of weight values w, the network defines a
function h,, (x).

Can train by minimizing L2 loss:

N
_1/2Z|]h () =)l = 172> (ax — tg)?

n=1 n=1 k

where k indexes the output nodes
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Parameter Optimization
E(w)

L] i

WA wp we

\

w2 VE
¢ For either of these problems, the error function E(w) is
nasty

® Nasty = non-convex
* Non-convex = has local minima
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Gradient Descent

The function A, (x) implemented by a network is
complicated.
No closed-form: Use gradient descent.

It isn’t obvious how to compute error function derivatives
with respect to hidden weights.

® The credit assignment problem.
Backpropagation solves the credit assignment problem
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Error Backpropagation

e Backprop is an efficient method for computing error

derivatives gE" for all nodes in the network. Intuition:

1. Calculating derivatives for weights connected to output
nodes is easy.

2. Treat the derivatives as virtual “error"—how far is each
node activation “off”. Compute derivative of error for nodes
in previous layer.

3. Repeat until you reach input nodes.

® Propagates backwards the output error signal through the
network.
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Error at the output nodes

e First, feed training example x,, forward through the network,
storing all node activations q;
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Error at the output nodes

First, feed training example x, forward through the network,
storing all node activations q;

Calculating derivatives for weights connected to output
nodes is easy.

For output node k with activation a;, = g(ing) = g(>_; wirai)
and target value 7 the error signal is

A[k] = g’(ink)(z‘k — ak).
Gradient Descent Weight Update:

Wik < Wik + a X a; x AlK]
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Error at the hidden nodes

e Consider a hidden node i connected to downstream nodes
in the next layer.

¢ The error signal A[i] is node activation derivative, times the
weighted sum of contributions to the connected error
signals.

¢ In symbols,

Al = (i) 3wyl
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hidden

w O O O

The error signal at a hidden unit is proportional to the error
signals at the units it influences:

All] = ¢'(ini) Y wiAl-
j=1
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The Backpropagation Algorithm

1. Apply input vector x,, and forward propagate to find all
inputs in; and outputs a;.

2. Evaluate the error signals A, for all output nodes.

3. Backpropagate the Ay to obtain error signals A; for each
hidden node.

4. Perform the gradient descent updates for each weight
vector wy;:
wij < wij + a X a; X Alj]

Demo Alspace http://aispace.org/neural/.


http://aispace.org/neural/
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Theory: Backpropagation implements Gradient Descent
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Correctness Proof for Backpropagation Algorithm I.

a; X Wy

&
in; la; *ing

]

Exercise: From this functional diagram find expressions for the

following quantities:
o %_
o %}‘-
o g%_
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Correctness Proof for Backpropagation Algorithm II.

in; *a *ing

Wi

* We need to show that —8—’? = Alj] - ai.

¢ This follows easily given the following result

Theorem
For each node j, we have A[j] = — %=,
7
H . OE, _ OE, Oinj __ . )
e Proof given theorem: - =5 awfj = Al - a;.

¢ Next we prove the theorem.
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Multi-variate Chain Rule

e For f(x,y), with f differentiable wrt x and y, and x and y
differentiable wrt u:
o _ ofox oy
ou  OxOu 0Oyou

u]
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Proof of Theorem, |

e We want to show that A[j] = BE,".

e Think of the error as a function of the activation levels of

the nodes after node j.

* Formally, we can write 9% = = go Enling,,ing, ..., in,,)

where {k;} are the mdlces of the nodes that receive input
from j.
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Proof of Theorem, |

We want to show that A[j] = BE,".

Think of the error as a function of the activation levels of
the nodes after node j.

Formally, we can write 92 = = go Enling,,ing, ..., in,,)

where {k;} are the mdlces of the nodes that receive input
from j.

Now using the multi-variate chain rule, we have
OE,, Oiny,
8an Z Oiny Oin;

We saw before that G = wj x g/ (in;).
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Proof of Theorem, I
We want to show that A[j] = 8E/".

Proof by backward induction. Easy to see that the claim is
true for output nodes. (Exercise).

Inductive step: Consider node j and suppose that

A[k] = — 2= for all nodes k that receive input from ;.
ing

Using the multivariate chain rule, we have

9K,
aii’lj

OE,, Oiny
amk 8mj

I
M§

»
Il

1

6mk .
Alk am] ZA wikg (inj) = A[j].

I
Ms

T

1

where step 1 applies the inductive hypothesis, step 2 the
result from the previous slide, and step 3 the definition of

Alj].
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Other Learning Topics

Regularization: L2-regularizer (weight decay).
Experimenting with Network Architectures is often key.

Learn Architecture

® Prune Weights: the Optimal Brain Damage Method.

® Grow Network: Tiling, Cascade-Correlation Algorithm.
Current Research Topic: Architecture Search for Deep
Learning
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Applications of Neural Networks

® Many success stories for neural networks
e Credit card fraud detection
® Hand-written digit recognition
® Face detection
® Autonomous driving (CMU ALVINN)
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Hand-written D|g|t Recognition

Oo W+ Ly
~ ANy —~\ &
RN ~=d
S BN w0OIN
LOPraxNQIxN
SN W=~ e
QN Bt ~g oW o
N & =0 oo o £ o
R U= a9 Xxas
O ON O LY —

7/ 28064860/

e MNIST - standard dataset for hand-written digit recognition
® 60000 training, 10000 test images
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LeNet-5

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28
S2: f. maps

6@14x14

INPUT
32x32

|
‘ Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

¢ |LeNet developed by Yann LeCun et al.
e Convolutional neural network

® |ocal receptive fields (5x5 connectivity)
® Subsampling (2x2)
® Shared weights (reuse same 5x5 “filter”)
® Breaking symmetry

* See
http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx
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e The 82 errors made by LeNet5 (0.82% test error rate)



Conclusion

Feed-forward networks can be used for predicting discrete
or continuous target variables
Very expressive, can approximate arbitrary continuous
functions.
Different activation functions possible.
Learning is more difficult, error function has many local
minima

* Use stochastic gradient descent, obtain (good?) local

minimum

Backpropagation for efficient gradient computation.
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