Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 0000000 [ee]ele]

Artificial Neural Networks

Oliver Schulte
School of Computing Science
Simon Fraser University
Introduction to Deep Learning

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 0000000 [ee]ele]

Neural Networks

¢ Neural networks arise from attempts to model
human/animal brains

® Many models, many claims of biological plausibility
e We will focus on multi-layer perceptrons
* Mathematical properties rather than biological plausibility

Uses of Neural Networks

® Pros

Good for continuous input variables.

General continuous function approximators.

Highly non-linear.

Learn features.

Good to use in continuous domains with little knowledge:
® When you don’t know good features.
® You don’t know the form of a good functional model.

e Cons

¢ Not interpretable, “black box”.
® Learning is slow.
® Good generalization can require many datapoints.

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examy
000000000 0000 000000 0000000 0000

Function Approximation Demos

e Home Value of Hockey State https://user-images.
githubusercontent.com/22108101/
28182140-eb64b49%9a-67bf-11e7-97aa-046298£721e5.

Jpg

¢ Function Learning Examples (open in Google Chrome with
Applet extension) http://neuron.eng.wayne.edu/
bpFunctionApprox/bpFunctionApprox.html

https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html

Applications

There are many, many applications.

World-Champion Backgammon Player.
http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
No Hands Across America Tour.
http://www.cs.cmu.edu/afs/cs/usr/tjochem/
www/nhaa/nhaa_home_page.html

Digit Recognition with 99.26% accuracy.

Speech Recognition
http://research.microsoft.com/en—-us/news/
features/speechrecognition-082911.aspx
Translation http://translate.google.com

ChatGPT chat .openai.com

http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://translate.google.com
chat.openai.com

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 0000000 [ee]ele]

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Theory: Backpropagation implements Gradient Descent

Examples

900000000 0000

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent
000000 0000000

Examg
Outline

Feed-forward Networks

Feed-forward Networks
0e0000000

Neurons
Model of an individual neuron j
¢ Pass input in; through a non-linear activation function to
get output a; = g(in;)
e For non-input nodes, the input is the weighted linear sum
of connected node activations + bias wy,:

n
il’lj: E W,‘jai
i=0

from Russell and Norvig, AIMA2e

Feed-forward Networks
0e0000000

Neurons
Model of an individual neuron j
¢ Pass input in; through a non-linear activation function to
get output a; = g(in;)
e For non-input nodes, the input is the weighted linear sum
of connected node activations + bias wy,:

n
il’lj: E W,‘jai
i=0

from Russell and Norvig, AIMA2e

Feed-forward Networks Netwonk Training Er\or Backp\opagqﬂon Theony chkpropnghon implements Gradient Descent Exqm;

0O@0000000 oo OOOOCOO 000000C

Neurons
Model of an individual neuron j
¢ Pass input in; through a non-linear activation function to
get output a; = g(in;)
e For non-input nodes, the input is the weighted linear sum
of connected node activations + bias wy,:

n
ll’lj = E w,-jai
i=0

ag=1 = o(in;
0 W\ a;= g(in))
Input Input Activation Output
Links Function Function ~ OUtPut Links

from Russell and Norvig, AIMA2e

Feed-forward Networks
00@000000

Activation Functions

e Can use a variety of activation functions
® Sigmoidal (S-shaped)
¢ Logistic sigmoid 1/(1 + exp(—a)) (useful for binary
classification)
® Hyperbolic tangent tanh
Radial basis function a; = >°,(x; — w;)?
Softmax
® Useful for multi-class classification
Hard Threshold
® Rectified Linear Unit (deep learning)

e Should be differentiable for gradient-based learning (later)
e Can use different activation functions in each unit

Feed-forward Networks
000e00000

Activation Functions Visualized

0.5 0.5

864202468 642002456
Left Threshold
Middle Logistic sigmoid Logistic(x) =

1
T+exp(—x)
maps a real number to a probability

Right Logistic regression Logistic(w e x)

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examy
000080000 0000 000000 0000000 [ee]ele]

Network of Neurons

o &,

(a) (b)

Feed-forward Networks
000008000

Function Composition

Think logic circuits

BOGEY hy(,,3)
0.8
0.6
04
0.2

0

Two opposite-facing sigmoids = ridge. Two ridges = bump.

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examy
000000800 0000 000000 0000000 [ee]ele]

Hidden Units As Feature Extractors

L Lt
E &

il
LT

learned input-to-hidden weights

mEm

® 64 input nodes
® 2 hidden units
e 2x learned weight vector at hidden unit

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examy
000000080 0000 000000 0000000 [ee]ele]

Image Analysis Tasks

Classification Retrieval

firebo
drilling platform [

beach wagan gill
fire engine || dead-man's-fingers

[Krizhevsky 2012]

Feed-forward Networks
00000000e

Neural Net Learned Features

iy &l O
Ams e 2y g
- . U
W By s = A A
T £ ob od
< uil > = F e~
|y {
2! L
oy S5y =2
- ol
. object pa
WA
[3 ombinatio
e
of edge
"
edae

Outline

Feed-forward Networks
Network Training
Error Backpropagation

Theory: Backpropagation implements Gradient Descent

Examples

«O> «Fr «=Z»r <

i
v
it

DA

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 0000000 0000

Measuring Training Error

¢ Given a specified network structure, how do we set its
parameters (weights)?
® As usual, we define a criterion to measure how well our
network performs, optimize against it

Network Training
0000

Measuring Training Error

Given a specified network structure, how do we set its
parameters (weights)?

® As usual, we define a criterion to measure how well our
network performs, optimize against it

Training data are (x,,t,)
Corresponds to neural net with multiple output nodes

Given a set of weight values w, the network defines a
function h,, (x).

Can train by minimizing L2 loss:

N
_1/2Z|]h () =)l = 172> (ax — tg)?

n=1 n=1 k

where k indexes the output nodes

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp

Parameter Optimization
E(w)

L] i

WA wp we

\

w2 VE
¢ For either of these problems, the error function E(w) is
nasty

® Nasty = non-convex
* Non-convex = has local minima

Network Training
000®

Gradient Descent

The function A, (x) implemented by a network is
complicated.
No closed-form: Use gradient descent.

It isn’t obvious how to compute error function derivatives
with respect to hidden weights.

® The credit assignment problem.
Backpropagation solves the credit assignment problem

000000000

0000

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent
@00000 0000000

Examg
Outline

Error Backpropagation

Error Backpropagation
0e0000

Error Backpropagation

e Backprop is an efficient method for computing error

derivatives gE" for all nodes in the network. Intuition:

1. Calculating derivatives for weights connected to output
nodes is easy.

2. Treat the derivatives as virtual “error"—how far is each
node activation “off”. Compute derivative of error for nodes
in previous layer.

3. Repeat until you reach input nodes.

® Propagates backwards the output error signal through the
network.

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 00e000 0000000 [ee]ele]

Error at the output nodes

e First, feed training example x,, forward through the network,
storing all node activations q;

Error Backpropagation
00@000

Error at the output nodes

First, feed training example x, forward through the network,
storing all node activations q;

Calculating derivatives for weights connected to output
nodes is easy.

For output node k with activation a;, = g(ing) = g(>_; wirai)
and target value 7 the error signal is

A[k] = g’(ink)(z‘k — ak).
Gradient Descent Weight Update:

Wik < Wik + a X a; x AlK]

Error Backpropagation
000e00

Error at the hidden nodes

e Consider a hidden node i connected to downstream nodes
in the next layer.

¢ The error signal A[i] is node activation derivative, times the
weighted sum of contributions to the connected error
signals.

¢ In symbols,

Al = (i) 3wyl

Feed-forward Networks Netwonk Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Exqm;
000000000 000000 0000000

hidden

w O O O

The error signal at a hidden unit is proportional to the error
signals at the units it influences:

All] = ¢'(ini) Y wiAl-
j=1

Error Backpropagation
O0000e

The Backpropagation Algorithm

1. Apply input vector x,, and forward propagate to find all
inputs in; and outputs a;.

2. Evaluate the error signals A, for all output nodes.

3. Backpropagate the Ay to obtain error signals A; for each
hidden node.

4. Perform the gradient descent updates for each weight
vector wy;:
wij < wij + a X a; X Alj]

Demo Alspace http://aispace.org/neural/.

http://aispace.org/neural/

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 @000000 0000

Outline

Theory: Backpropagation implements Gradient Descent

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 0Oe00000 [ee]ele]

Correctness Proof for Backpropagation Algorithm I.

a; X Wy

&
in; la; *ing

]

Exercise: From this functional diagram find expressions for the

following quantities:
o %_
o %}‘-
o g%_

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 00@0000 0000

Correctness Proof for Backpropagation Algorithm II.

in; *a *ing

Wi

* We need to show that —8—’? = Alj] - ai.

¢ This follows easily given the following result

Theorem
For each node j, we have A[j] = — %=,
7
H . OE, _ OE, Oinj __ .)
e Proof given theorem: - =5 awfj = Al - a;.

¢ Next we prove the theorem.

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 000e000 [ee]ele]

Multi-variate Chain Rule

e For f(x,y), with f differentiable wrt x and y, and x and y
differentiable wrt u:
o _ ofox oy
ou OxOu 0Oyou

u]

Theory: Backpropagation implements Gradient Descent
0000e00

Proof of Theorem, |

e We want to show that A[j] = BE,".

e Think of the error as a function of the activation levels of

the nodes after node j.

* Formally, we can write 9% = = go Enling,,ing, ..., in,,)

where {k;} are the mdlces of the nodes that receive input
from j.

Theory: Backpropagation implements Gradient Descent
0000e00

Proof of Theorem, |

We want to show that A[j] = BE,".

Think of the error as a function of the activation levels of
the nodes after node j.

Formally, we can write 92 = = go Enling,,ing, ..., in,,)

where {k;} are the mdlces of the nodes that receive input
from j.

Now using the multi-variate chain rule, we have
OE,, Oiny,
8an Z Oiny Oin;

We saw before that G = wj x g/ (in;).

Theory: Backpropagation implements Gradient Descent
0000080

Proof of Theorem, I
We want to show that A[j] = 8E/".

Proof by backward induction. Easy to see that the claim is
true for output nodes. (Exercise).

Inductive step: Consider node j and suppose that

A[k] = — 2= for all nodes k that receive input from ;.
ing

Using the multivariate chain rule, we have

9K,
aii’lj

OE,, Oiny
amk 8mj

I
M§

»
Il

1

6mk .
Alk am] ZA wikg (inj) = A[j].

I
Ms

T

1

where step 1 applies the inductive hypothesis, step 2 the
result from the previous slide, and step 3 the definition of

Alj].

Theory: Backpropagation implements Gradient Descent
0O00000e

Other Learning Topics

Regularization: L2-regularizer (weight decay).
Experimenting with Network Architectures is often key.

Learn Architecture

® Prune Weights: the Optimal Brain Damage Method.

® Grow Network: Tiling, Cascade-Correlation Algorithm.
Current Research Topic: Architecture Search for Deep
Learning

Outline

Feed-forward Networks
Network Training
Error Backpropagation

Theory: Backpropagation implements Gradient Descent

Examples

«4O0>» «Fr» «=)>» «

i
v
it

DA

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 0000000 [o] lele]

Applications of Neural Networks

® Many success stories for neural networks
e Credit card fraud detection
® Hand-written digit recognition
® Face detection
® Autonomous driving (CMU ALVINN)

chkpropqgahon implements Gradient Descent Examy
0000

Hand-written D|g|t Recognition

Oo W+ Ly
~ ANy —~\ &
RN ~=d
S BN w0OIN
LOPraxNQIxN
SN W=~ e
QN Bt ~g oW o
N & =0 oo o £ o
R U= a9 Xxas
O ON O LY —

7/ 28064860/

e MNIST - standard dataset for hand-written digit recognition
® 60000 training, 10000 test images

Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent Examp
000000000 0000 000000 0000000 000!

LeNet-5

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28
S2: f. maps

6@14x14

INPUT
32x32

|
‘ Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

¢ |LeNet developed by Yann LeCun et al.
e Convolutional neural network

® |ocal receptive fields (5x5 connectivity)
® Subsampling (2x2)
® Shared weights (reuse same 5x5 “filter”)
® Breaking symmetry

* See
http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx

Examg
0000

1

G ® v > F 672 23 %

9->4 8->0 7->8 5->3 8-—>7 0->6 3->7 2—>7 8->3 9-—>4

d 1 %5 # 8 3 &
4->6 3—>5 8->2 2->1 5->3 4->8 2->8 3->5 6—>5 7->3

4 B

8—>2 5->3 4->8 3->9 6—>0 9—>8 4->9 6—>1 9—>4 9—>1
P & L 3 > 1 & « ¥
9—>4 2->0 6-—>1 3—>5 3->2 9->5 6—>0 6—>0 6—>0 6—>8
A 7 4 A 2 9

& 3 ¥ 3 0 % q (U©A\

siolele

©

ol @]

o

T of
i 9]

¥

4->6 7->3 9—>4 4->6 2->7 9->7 4->3

8—>5

;
) o
8—>4 3->5 8->4 6—>

/
o

2
1->5 9->8 6->3 0->2 6->5 9->5
2 s & 2 7

&
| g

8->7

}?‘

4

~ i

-5
!

I
A

e

O

o
AN

0—>7
‘?

3

5

I
6

Z

2->8 8->5 4->9 7->2 7->2 6->5 9->7

o
Ay
1

©

—
A
|

e The 82 errors made by LeNet5 (0.82% test error rate)

Conclusion

Feed-forward networks can be used for predicting discrete
or continuous target variables
Very expressive, can approximate arbitrary continuous
functions.
Different activation functions possible.
Learning is more difficult, error function has many local
minima

* Use stochastic gradient descent, obtain (good?) local

minimum

Backpropagation for efficient gradient computation.

Examg
0000

	Feed-forward Networks
	Network Training
	Error Backpropagation
	Theory: Backpropagation implements Gradient Descent
	Examples

