Artificial Neural Networks

Oliver Schulte
School of Computing Science
Simon Fraser University
Introduction to Deep Learning

Neural Networks

- Neural networks arise from attempts to model human/animal brains
 - Many models, many claims of biological plausibility
- We will focus on multi-layer perceptrons
 - Mathematical properties rather than biological plausibility

Uses of Neural Networks

Pros

- Good for continuous input variables.
- General continuous function approximators.
- · Highly non-linear.
- Learn features.
- Good to use in continuous domains with little knowledge:
 - When you don't know good features.
 - You don't know the form of a good functional model.

Cons

- Not interpretable, "black box".
- Learning is slow.
- Good generalization can require many datapoints.

Function Approximation Demos

- Home Value of Hockey State https://user-images.githubusercontent.com/22108101/ 28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
- Function Learning Examples (open in Google Chrome with Applet extension) http://neuron.eng.wayne.edu/ bpFunctionApprox/bpFunctionApprox.html

Applications

There are many, many applications.

- World-Champion Backgammon Player.
 http://en.wikipedia.org/wiki/TD-Gammon
 http://en.wikipedia.org/wiki/Backgammon
- No Hands Across America Tour.
 http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
- Digit Recognition with 99.26% accuracy.
- Speech Recognition
 http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
- Translation http://translate.google.com
- ChatGPT chat.openai.com

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Theory: Backpropagation implements Gradient Descent

Examples

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Theory: Backpropagation implements Gradient Descent

Examples

Neurons

Model of an individual neuron j

- Pass input in_j through a non-linear activation function to get output $a_i = g(in_i)$
- For non-input nodes, the input is the weighted linear sum of connected node activations + bias w_{0,i}:

$$in_j = \sum_{i=0}^n w_{ij} a_i$$

Neurons

Model of an individual neuron j

- Pass input in_j through a non-linear activation function to get output $a_i = g(in_i)$
- For non-input nodes, the input is the weighted linear sum of connected node activations + bias w_{0,i}:

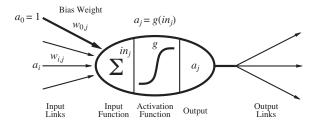
$$in_j = \sum_{i=0}^n w_{ij} a_i$$

Neurons

Model of an individual neuron j

- Pass input in_j through a non-linear activation function to get output $a_i = g(in_i)$
- For non-input nodes, the input is the weighted linear sum of connected node activations + bias w_{0,i}:

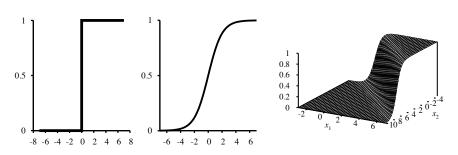
$$in_j = \sum_{i=0}^n w_{ij} a_i$$



Activation Functions

- Can use a variety of activation functions
 - Sigmoidal (S-shaped)
 - Logistic sigmoid $1/(1+\exp(-a))$ (useful for binary classification)
 - Hyperbolic tangent tanh
 - Radial basis function $a_j = \sum_i (x_i w_{ji})^2$
 - Softmax
 - · Useful for multi-class classification
 - Hard Threshold
 - Rectified Linear Unit (deep learning)
 - ...
- Should be differentiable for gradient-based learning (later)
- Can use different activation functions in each unit

Activation Functions Visualized

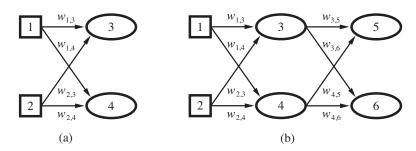


Left Threshold

Middle Logistic sigmoid $Logistic(x) = \frac{1}{1 + \exp(-x)}$ maps a real number to a probability

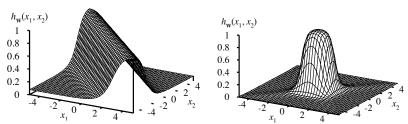
Right Logistic regression $Logistic(w \bullet x)$

Network of Neurons



Function Composition

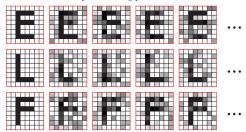
Think logic circuits

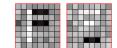


Two opposite-facing sigmoids = ridge. Two ridges = bump.

Hidden Units As Feature Extractors

sample training patterns





learned input-to-hidden weights

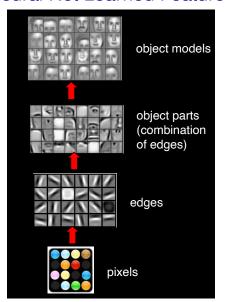
- 64 input nodes
- 2 hidden units
- 2x learned weight vector at hidden unit

Image Analysis Tasks

Classification Retrieval

[Krizhevsky 2012]

Neural Net Learned Features



Outline

Feed-forward Networks

Network Training

Error Backpropagation

Theory: Backpropagation implements Gradient Descent

Examples

Measuring Training Error

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- Training data are (x_n, t_n)
- Corresponds to neural net with multiple output nodes
- Given a set of weight values w, the network defines a function $h_w(x)$.
- Can train by minimizing L2 loss:

$$E(w) = 1/2 \sum_{n=1}^{N} ||\boldsymbol{h}_{w}(\boldsymbol{x}_{n}) - \boldsymbol{t}_{n}||^{2} = 1/2 \sum_{n=1}^{N} \sum_{k} (a_{k} - t_{n,k})^{2}$$

where k indexes the output nodes

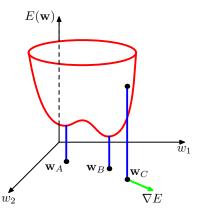
Measuring Training Error

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- Training data are (x_n, t_n)
- Corresponds to neural net with multiple output nodes
- Given a set of weight values w, the network defines a function $h_w(x)$.
- Can train by minimizing L2 loss:

$$E(\mathbf{w}) = 1/2 \sum_{n=1}^{N} ||\mathbf{h}_{\mathbf{w}}(\mathbf{x}_n) - \mathbf{t}_n)||^2 = 1/2 \sum_{n=1}^{N} \sum_{k} (a_k - t_{n,k})^2$$

where *k* indexes the output nodes

Parameter Optimization



- For either of these problems, the error function $E(\mathbf{w})$ is nasty
 - Nasty = non-convex
 - Non-convex = has local minima

Gradient Descent

- The function $h_w(x)$ implemented by a network is complicated.
- No closed-form: Use gradient descent.
- It isn't obvious how to compute error function derivatives with respect to hidden weights.
 - The credit assignment problem.
- Backpropagation solves the credit assignment problem

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Theory: Backpropagation implements Gradient Descent

Examples

Error Backpropagation

- Backprop is an efficient method for computing error derivatives $\frac{\partial E_n}{\partial w_{ii}}$ for *all* nodes in the network. Intuition:
 - 1. Calculating derivatives for weights connected to output nodes is easy.
 - Treat the derivatives as virtual "error"—how far is each node activation "off". Compute derivative of error for nodes in previous layer.
 - 3. Repeat until you reach input nodes.
- Propagates backwards the output error signal through the network.

Error at the output nodes

- First, feed training example x_n forward through the network, storing all node activations a_i
- Calculating derivatives for weights connected to output nodes is easy.
- For output node k with activation $a_k = g(in_k) = g(\sum_i w_{ik}a_i)$ and target value t_k the error signal is

$$\Delta[k] \equiv g'(in_k)(t_k - a_k).$$

• Gradient Descent Weight Update:

$$w_{ik} \leftarrow w_{ik} + \alpha \times a_i \times \Delta[k]$$

Error at the output nodes

- First, feed training example x_n forward through the network, storing all node activations a_i
- Calculating derivatives for weights connected to output nodes is easy.
- For output node k with activation $a_k = g(in_k) = g(\sum_i w_{ik} a_i)$ and target value t_k the error signal is

$$\Delta[k] \equiv g'(in_k)(t_k - a_k).$$

Gradient Descent Weight Update:

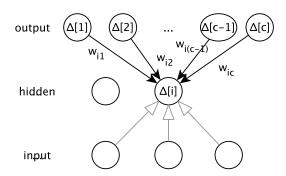
$$w_{ik} \leftarrow w_{ik} + \alpha \times a_i \times \Delta[k]$$

Error at the hidden nodes

- Consider a hidden node i connected to downstream nodes in the next layer.
- The error signal $\Delta[i]$ is node activation derivative, times the weighted sum of contributions to the connected error signals.
- In symbols,

$$\Delta[i] = g'(in_i) \sum_i w_{ij} \Delta[j].$$

Backpropagation Picture



The error signal at a hidden unit is proportional to the error signals at the units it influences:

$$\Delta[i] = g'(in_i) \sum_{i=1}^{c} w_{ij} \Delta[j].$$

The Backpropagation Algorithm

- 1. Apply input vector x_n and forward propagate to find all inputs in_i and outputs a_i .
- 2. Evaluate the error signals Δ_k for all output nodes.
- 3. Backpropagate the Δ_k to obtain error signals Δ_j for each hidden node.
- 4. Perform the gradient descent updates for each weight vector w_{ii} :

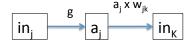
$$w_{ij} \leftarrow w_{ij} + \alpha \times a_i \times \Delta[j]$$

Demo Alspace http://aispace.org/neural/.

Outline

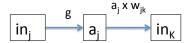
Theory: Backpropagation implements Gradient Descent

Correctness Proof for Backpropagation Algorithm I.



Exercise: From this functional diagram find expressions for the following quantities:

- $\frac{\partial in_k}{\partial w_{ik}}$
- $\frac{\partial in_k}{\partial a_i}$.
- $\frac{\partial in_k}{\partial in_i}$.



- We need to show that $-\frac{\partial E_n}{w_{ij}} = \Delta[j] \cdot a_i$.
- · This follows easily given the following result

Theorem

For each node j, we have $\Delta[j] = -\frac{\partial E_n}{\partial n_i}$.

- Proof given theorem: $-\frac{\partial E_n}{w_{ii}} = -\frac{\partial E_n}{in_i} \cdot \frac{\partial in_j}{\partial w_{ij}} = \Delta[j] \cdot a_i$.
- Next we prove the theorem.

Multi-variate Chain Rule

 For f(x,y), with f differentiable wrt x and y, and x and y differentiable wrt u:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$$

Proof of Theorem, I

- We want to show that $\Delta[j] = -rac{\partial E_n}{in_j}$.
- Think of the error as a function of the activation levels of the nodes after node j.
- Formally, we can write $\frac{\partial E_n}{\partial in_j} = \frac{\partial}{\partial in_j} E_n(in_{k_1}, in_{k_2}, \dots, in_{k_m})$ where $\{k_i\}$ are the indices of the nodes that receive input from j.
- Now using the multi-variate chain rule, we have

$$\frac{\partial E_n}{\partial in_j} = \sum_k \frac{\partial E_n}{\partial in_k} \frac{\partial in_k}{\partial in_j}$$

• We saw before that $\frac{\partial in_k}{\partial in_i} = w_{jk} \times g'(in_j)$.

Proof of Theorem, I

- We want to show that $\Delta[j] = -rac{\partial E_n}{i n_j}$.
- Think of the error as a function of the activation levels of the nodes after node j.
- Formally, we can write $\frac{\partial E_n}{\partial in_j} = \frac{\partial}{\partial in_j} E_n(in_{k_1}, in_{k_2}, \dots, in_{k_m})$ where $\{k_i\}$ are the indices of the nodes that receive input from j.
- Now using the multi-variate chain rule, we have

$$\frac{\partial E_n}{\partial in_j} = \sum_k \frac{\partial E_n}{\partial in_k} \frac{\partial in_k}{\partial in_j}$$

• We saw before that $\frac{\partial in_k}{\partial in_j} = w_{jk} \times g'(in_j)$.

Proof of Theorem, II

- We want to show that $\Delta[j] = -\frac{\partial E_n}{in_i}$.
- Proof by backward induction. Easy to see that the claim is true for output nodes. (Exercise).
- Inductive step: Consider node j and suppose that $\Delta[k] = -\frac{\partial E_n}{in_k}$ for all nodes k that receive input from j.
- Using the multivariate chain rule, we have

$$-\frac{\partial E_n}{\partial i n_j} = \sum_{k=1}^m -\frac{\partial E_n}{\partial i n_k} \frac{\partial i n_k}{\partial i n_j}$$
$$= \sum_{k=1}^m \Delta[k] \frac{\partial i n_k}{\partial i n_j} = \sum_{k=1}^m \Delta[k] w_{jk} g'(i n_j) = \Delta[j].$$

where step 1 applies the inductive hypothesis, step 2 the result from the previous slide, and step 3 the definition of $\Delta[j]$.

Other Learning Topics

- Regularization: L2-regularizer (weight decay).
- Experimenting with Network Architectures is often key.
- Learn Architecture
 - Prune Weights: the Optimal Brain Damage Method.
 - Grow Network: Tiling, Cascade-Correlation Algorithm.
- Current Research Topic: Architecture Search for Deep Learning

Outline

Examples

Applications of Neural Networks

- Many success stories for neural networks
 - Credit card fraud detection
 - · Hand-written digit recognition
 - Face detection
 - Autonomous driving (CMU ALVINN)

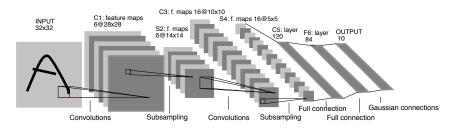
Examp

Hand-written Digit Recognition

- MNIST standard dataset for hand-written digit recognition
 - 60000 training, 10000 test images

0000

LeNet-5



- LeNet developed by Yann LeCun et al.
 - Convolutional neural network
 - Local receptive fields (5x5 connectivity)
 - Subsampling (2x2)
 - Shared weights (reuse same 5x5 "filter")
 - Breaking symmetry
 - See http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx

Examp

The 82 errors made by LeNet5 (0.82% test error rate)

Conclusion

- Feed-forward networks can be used for predicting discrete or continuous target variables
- Very expressive, can approximate arbitrary continuous functions.
- Different activation functions possible.
- Learning is more difficult, error function has many local minima
 - Use stochastic gradient descent, obtain (good?) local minimum
- Backpropagation for efficient gradient computation.

Examp