
Solution to Midterm Question on Softmax
Backpropagation

March 7, 2020

Recall that the softmax function takes in a vector (z1, . . . , zD) and returns a vector
(y1, . . . , yD). We can express it with the following equations, illustrated in the network
shown below for D = 2.

r =
∑

j

exp(zj)

yi = exp(zi)/r
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7. [3pts] Recall that the softmax function takes in a vector (z1, . . . , zD) and returns a
vector (y1, . . . , yD). We can express it in the following form:

r =
X

j

ezj yi =
ezi

r

(a) [1pt] Consider D = 2, i.e. just two inputs and outputs to the softmax. Draw the
computation graph relating z1, z2, r, y1, and y2.
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Marking: (+0.5) for having all nodes. (+0.5) for having all edges.

(b) [1pt] Determine the backprop updates for computing the zj when given the yi.
You do not need to justify your answer. (You may give your answer either for
D = 2 or for the more general case.)

r = �
X

i

yi
ezi

r2

zj = yj
ezj

r
+ rezj

Marking: (+0.5) for each equation. Common mistakes were missing the partial
derivative from ȳj for z̄j or missing the summation for r̄.

(c) [1pt] Write a function to implement the vector-Jacobian product (VJP) for the
softmax function based on your answer from part (b). For e�ciency, it should
operate on a mini-batch. The inputs are:

• a matrix Z of size N ⇥ D giving a batch of input vectors. N is the batch
size and D is the number of dimensions. Each row gives one input vector
z = (z1, . . . , zD).

• A matrix Y_bar giving the output error signals. It is also N ⇥ D.
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Figure 1: Softmax Computation Graph

The error is a function of the output nodes; we may write it as E(y1, y2). We can
assume that we have already computed the error derivatives with respect to the output
nodes, as in the backpropagation algorithm:

Assume
∂E

∂y1
and

∂E

∂y2
.

To find the gradient of the error function with respect to network weights that feed
into the zi variables, we need to find the gradient with respect to the zi variables. This
can be done using the multi-variate chain rule as follows. (See also the solution in the
posted sample midterm.)
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∂yi
∂r

= − exp(zi)/r
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I tried to make this problem easier and therefore suggested an approach where we
think of the computation graph as a neural network with activation functions g. In that
case we can apply the standard backpropagation formula. The problem is that to make
the computation correct, we end up feeding to yi the product of inputs rather than the
sum as required by backpropagation. As we discussed in class, several of you followed
this approach. We’ll give bonus points for this. Come see me if you want me to explain
it in detail.
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