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OUTLINE

• What is Reinforcement Learning?

• Key Definitions

• Key Learning Tasks

• Reinforcement Learning Techniques

• Reinforcement Learning with Neural Nets
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OVERVIEW
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LEARNING TO ACT

• So far: learning to predict

• Now: learn to act
• In engineering: control theory

• Economics, operations research: decision and game theory
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EXAMPLES

• Fly stunt manoeuvres in a helicopter

• Defeat the world champion at Backgammon, Go

• Manage an investment portfolio

• Control a power station

• Make a humanoid robot walk

• Play Starcraft,  Atari games better than humans

• Drive a car

• Play hockey
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https://www.youtube.com/watch?v=cUTMhmVh1qs


A NEW KIND OF LEARNING

• There is no supervisor, only a reward signal

• No labels “wrong choice, right choice”

• Feedback is delayed, not instantaneous

• Time really matters (sequential, non i.i.d data)

• Agent’s actions affect the subsequent data it receives
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RL FRAMEWORK

• At each step t the agent:
• Executes action At
• Receives observation Ot
• Receives scalar reward Rt
• The environment:
• Receives action At
• Emits observation Ot+1
• Emits scalar reward Rt+1

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step
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ACTING IN ACTION

• Autonomous Helicopter

• An example of imitation learning: start by observing human 
actions

• Learning to play video games

• “Deep Q works best when it lives in the moment”

• Learn to flip pancakes
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https://www.youtube.com/watch?v=VCdxqn0fcnE
https://www.wired.com/2015/02/google-ai-plays-atari-like-pros/
http://www.youtube.com/watch?v=W_gxLKSsSIE


MARKOV DECISION PROCESSES
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MARKOV PROCESS

• Aka Markov Chains
• Think about atomic representation of environment state (Russell and 

Norvig)
• Like state space in problem search
• A Markov process moves from one state to another with a certain 

probability
• Transition probability: P(st+1 = s’|st = s)
• Demo
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http://setosa.io/blog/2014/07/26/markov-chains/index.html


EXAMPLE: STUDENT LIFE
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Lecture 2: Markov Decision Processes

Markov Processes

Markov Chains

Example: Student Markov Chain Episodes

0.5

0.5

0.2
0.8 0.6

0.4

SleepFacebook

Class 2

0.9

0.1

Pub

Class 3 PassClass 1

0.2
0.4

0.4

1.0

Sample episodes for Student Markov
Chain starting from S1 = C1

S1, S2, ..., ST

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub C1 FB FB
FB C1 C2 C3 Pub C2 Sleep

Source: 
David Silver



MARKOV REWARD PROCESS

• Markov Process + 
Reward Rs associated 
with state

• More generally reward 
for transition R(s,s’)
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Lecture 2: Markov Decision Processes

Markov Reward Processes

MRP

Example: Student MRP

R = +10

0.5

0.5

0.2

0.8 0.6

0.4

SleepFacebook

Class 2

0.9

0.1

R = +1

R = -1 R = 0

Pub

Class 3 PassClass 1
R = -2 R = -2 R = -2

0.2
0.4

0.4

1.0



MARKOV DECISION PROCESSES

• Markov decision process (MDP) = Markov reward process + actions 

• Transition probabilities, rewards depend on actions

• Markov game = MDP with actions, rewards for > 1 agent
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EXAMPLE: STUDENT MARKOV DECISION 
PROCESS

Lecture 2: Markov Decision Processes

Markov Decision Processes

MDP

Example: Student MDP

R = +10

R = +1

R = -1 R = 0

R = -2 R = -2

0.2
0.4

0.4

Study

Facebook

Study

Sleep

Facebook

Quit

Pub

Study

R = -1

R = 0

14



HOCKEY 
EXAMPLE
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What are the states?
What are the rewards?



MARKOV CHAINS

Theory and Algorithms
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EXERCISES

• Consider a Markov chain like the one shown in this demo

• What is the probability of the sequence AABB?

• What is the longest possible sequence of observations?
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http://setosa.io/blog/2014/07/26/markov-chains/index.html


MULTI-STEP TRANSITIONS

• What is the chance that if we start in state s we will reach state 
s’ after a fixed number of n steps?
• Think: from initial state, what is the chance of reaching a goal state in 

n steps?

• E.g. in this demo, what is the chance that we reach state 3 from 
0 after 3 steps?

• What we want is a step-n transition matrix – how can we 
compute this efficiently? 

• Notation: Pn(s’|s)
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http://markov.yoriz.co.uk/


DYNAMIC PROGRAMMING

• Think Iterative Deepening: Build up transition matrices for 
1, 2,…,n-1, n steps.

• For n = 1: Use given transition matrix P(s’|s) = P1(s’|s)

• For n+1: Pn+1(s’|s)=∑s* P(s’|s*) x Pn(s’|s*)
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TREE VISUALIZATION FOR N=3
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s0

s1 s2s0

0.1
0.3 0.6 Uses 1-step transition probability P(s*|s0)

s1

0.2+
0.5+

0.3+
Uses 2-step transition probability P2(s1|s*)
 e.g. P2(s1|s0) = 0.2

To compute P3(s1|s0) s0 s1 s2
s0 0.1 0.3 0.6



TREE VISUALIZATION
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s0

s1 s2s0

0.1
0.3 0.6 Uses 1-step transition probability P(s*|s0)

s1

0.2+
0.5+

0.3+
Uses (n-1)-step transition probability P(n-1)(s1|s*)

To compute Pn(s1|s0) s0 s1 s2
s0 0.1 0.3 0.6



INFINITE CHAINS

• What if we let the number of steps n go to infinity?

• It can be shown that under certain conditions on the chain, 
there is a limit transition probability matrix P∞(s’|s)

• This is the stationary transition matrix
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PERFORMANCE METRIC FOR MDPS
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FACTORED STATES

• In practice, RL uses a factored state representation

ØThe state is defined by a list of values for a set of variables.

• E.g. in hockey, can include score, game time, locations of 
players, location of puck

• If we  have only 2 integer variables x and y, we can visualize 
states in a grid world

24

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


GRID WORLD EXAMPLE

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.
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Fig. Russell 
and Norvig 
2010



POLICIES

• A deterministic policy π is a function that maps states to actions

• π(s)=a

• i.e. tells us how to act

• Can also be probabilistic  π(a|s)

• Can be implemented using neural nets.
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POLICY EXAMPLE
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127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.



TRAJECTORIES

• A trajectory/episode is a sequence s1,a1,r1,s2, a2, r2,…,sn,an,rn

• Length of trajectory = n

• A policy π and MDP transition probabilities p(s’|s,a) determine a 
probability for every trajectory
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EXAMPLE + EXERCISE I
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127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

State Action Reward State Action Reward State Probability

(1,1) Up -0.04 (1,2) Up -0.04 (1,3) 0.8x0.8

(1,1) Up -0.04 (1,2) Up -0.04 (1,2) ?

(1,1) Up -0.04 (1,2) Right -0.04 (1,2) ?

• Note that the trajectory 
probability depends on both 
the policy and the MDP

• Last action-reward not shown 
(partial trajectory)



EXAMPLE + EXERCISE II
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127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

• Starting at state (1,1), how many trajectories are there of length
• 1
• 2
• 3



RETURNS AND DISCOUNTING

• The return of a trajectory is the total sum of rewards.

• Typically rewards are weighted by a discount factor γ between 0 and 1.

• Return = r0+γr1+γ2r2+...
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RETURN EXAMPLE + EXERCISE
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127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

State Action Reward State Action Reward State Probability Return

(1,1) Up -0.04 (1,2) Up -0.04 (1,3) 0.8x0.8 -0.04-
0.5x0.04

(1,1) Up -0.04 (1,2) Up -0.04 (1,2) 0.8x0.2 ?

(1,1) Up -0.04 (1,2) Right -0.04 (1,2) 0 ?

γ =0.5
What if γ =1?



WHY DISCOUNT?

• Most Markov reward and decision processes are discounted. Why?
• If the reward is financial, immediate rewards may earn more interest than delayed rewards
• Mathematically convenient to discount rewards for infinite trajectories (more below)
• Avoids infinite returns in cyclic Markov processes 
• Uncertainty about the future may not be fully represented
• There may be a small probability that process ends

• Animal/human behaviour shows preference for immediate reward
• If all trajectories are guaranteed to terminate, we can use undiscounted sum (γ =1)
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THE VALUE FUNCTION: PERFORMANCE 
METRIC FOR POLICIES

• Maximize expected return (total reward) of policy π from state s
= ∑ trajectories τ p(τ|s,π) x return(τ)
• We write Vπ(s) for the expected return of policy π from state s
• A policy π is optimal if for every state s, the policy achieves the maximum 

expected return
ØA policy π* is optimal if for any other policy π and for all states s

Vπ*(s) ≥ Vπ(s)
• The value of an optimal policy is written as V*(s).
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EXAMPLE + EXERCISE III
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127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

State Action Reward State Action Reward State Probability Return

(1,1) Up -0.04 (1,2) Up -0.04 (1,3) 0.8x0.8 -0.04-
0.5x0.04

(1,1) Up -0.04 (1,2) Up -0.04 (1,2) 0.8x0.2 -0.04-
0.5x0.04

(1,1) Up -0.04 (1,2) Right -0.04 (1,2) 0 -0.04-
0.5x0.04

• Add up the contributions to Vπ(1,1) 
for the three trajectories shown 

• γ = 0.5



OPTIMAL POLICIES: EXAMPLE
127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.
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COMMENTS ON THE VALUE FUNCTION

• A powerful look-ahead concept.

• Like searching through an entire search tree for expected success

• Game example: chance of winning, expected total score.

• Dr. Strange looks ahead

• Can also be computed by a neural network

37

https://www.youtube.com/watch?v=eGKPfZTXHsc


OPTIMAL VALUE FUNCTION: EXAMPLE

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.
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DYNAMIC PROGRAMMING

• Searching through the space of policies is infeasible

• Instead use a dynamic programming approach: Find an 
optimal policy for 1,2,…,n,n+1 steps.

• Eventually can consider letting n go to infinity

39



POLICY EVALUATION

Finite Horizon Case

40



INITIALIZATION

• We start by computing the value function Vπ(s) for a fixed 
policy π (not necessarily optimal).

• How can we compute the values V1
π(s) = expected return 

after 1 step?

• Directly from MDP:
V1
π(s)=∑s’ p(s’|π(s),s) x r(s,a,s’)

41

Probability of next state given 
current state and policy action

Reward associated with transition



TREE VISUALIZATION

42

s0

s1 s2s0

0.1
0.3 0.6 Uses 1-step transition probability P(s*|s0)

To compute V1
π(s0) s0 s1 s2

s0 0.1 0.3 0.6

r(s0,π(s0),s0) r(s0,π(s0),s1) r(s0,π(s0),s2)



EXAMPLE + EXERCISE
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127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

Next 
State

Reward Probability XReward Sum = 

(1,2) -0.04 0.8 0.8 x -0.04

(2,1) -0.04 0.1 0.1 x -0.04

(1,1) -0.04 0.1 0.1 x -0.04

• Compute V1
π(1,1)

• Exercise: what if π(1,1)=Right?
• So which move is better Up  or Right? 



POLICY EVALUATION: BELLMAN UPDATE

• Suppose we have computed Vn
π(s) = expected return after 

n steps

• How can we update to compute Vn+1
π(s)?

• Vn+1
π(s) = ∑s’ P(s’|s, π(s)) x [r(s, π(s),s’) + γVn

π(s’)]

44

Immediate reward expected future reward



TREE VISUALIZATION
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s0

s1 s2s0

0.1
0.3 0.6

1-step transition probability P(s*|s0)
To compute V(n+1)π(s0) s0 s1 s2

s0 0.1 0.3 0.6

r(s0,π(s0),s0) + r(s0,π(s0),s1) + r(s0,π(s0),s2) +

γ  x Vnπ(s0) γ  x Vnπ(s1) γ  x Vnπ(s2)

Immediate reward

expected future reward



EXAMPLE + EXERCISE
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127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

CHAPTER 17
MAKING COMPLEX DECISIONS

Figure 17.1 (a) A simple, stochastic 4× 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

Next 
State

Reward Probability XReward Future 
Reward

Sum = ?

(1,2) -0.04 0.8 0.8 x -0.04

(2,1) -0.04 0.1 0.1 x -0.04

(1,1) -0.04 0.1 0.1 x -0.04

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

• Suppose that V(n)π is as shown
• Compute V(n+1)π(1,1)
• Assume no discounting



VALUE ITERATION: POLICY EVALUATION

• Input: MDP, policy π, depth d
• Vπ(s) := 0  for all s
• For i = 1 to d
• For all s do 

Vπ(s) = ∑s’ P(s’|s, π(s)) x [r(s, π(s),s’) + γVπ(s’)]

• End for
• Return Vπ

47

grid world demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


VALUE ITERATION FOR SOLVING 
AN MDP

48



EXERCISE

49

127

Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.
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Figure 17.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 17.3 The utilities of the states in the 4× 3 world with γ=1 and r= − 0.04 for
transitions to nonterminal states.

• Given the value function shown, 
what is the best move at
• (1,1)
• (2,3)?



FROM VALUE TO POLICY

• It is easy to extract a policy from a value function:
• At each state, choose an action that maximizes expected 

future return
• π*(s) = argmax a ∑s’ P(s’|s, a) x [r(s, a,s’) + γV(s’)]

= argmax a Q*(s,a)
• Q*(s,a) is known as the action-value function
• = the expected total return if we choose action a in state s

50



VALUE ITERATION: OPTIMAL VALUE FUNCTION

• Input: MDP, policy π, depth d
• V*(s) := 0  for all s
• For i = 1 to d
• For all s do 

V*(s) = max a ∑s’ P(s’|s, a) x [r(s, a,s’) + γVπ(s’)]
= max a Q*(s,a)

• End for
• Return V*

51

Demo

https://www.cs.ubc.ca/~poole/demos/mdp/vi.html


EXTENSION TO INFINITE HORIZON

• It is often useful to let the process run to any depth

• MDP may run forever (“neverending learning”)

• Even if each trajectory is guaranteed to be finite, we may not know a definite upper bound in 
advance (termination uncertainty)

• Even if we know an upper bound in advance, it can introduce undesirable complications

• E.g. every video game ends within 10 hours but at the beginning players don’t think about the 
end

• Typically the value function changes very little at a modest depth (e.g. d = 13 for the NHL)
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VALUE ITERATION: INFINITE HORIZON

• Input: MDP, policy π, depth d

• V*(s) := 0  for all s

• Repeat until convergence

• For all s do 
V*(s) = max a ∑s’ P(s’|s, a) x [r(s, a,s’) + γVπ(s’)]

• Return V*
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RL CONCEPTS 
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These 3 functions can 
be computed by neural 
networks
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SUMMARY

• Reinforcement Learning: learning to act
• Adds actions and rewards to a temporal Markov model

• Inference/Planning: find optimal policy given fully specified MDP
• Value iteration: find optimal value function, extract policy

• Policy iteration: alternate policy evaluation and policy extraction

• Learning problems (next)
• Value function: Estimate the expected cumulative reward given a state for a 

given policy/ an optimal policy

• Agent discovery: Learn an optimal policy
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