LEARNING TO ACT

Oliver Schulte

Simon Fraser University

OUTLINE

- What is Reinforcement Learning?
- Key Definitions
- Key Learning Tasks
- Reinforcement Learning Techniques
- Reinforcement Learning with Neural Nets

OVERVIEW

Markov Decision Processes

3

LEARNING TO ACT

- So far: learning to predict
- Now: learn to **act**
 - In engineering: control theory
 - Economics, operations research: decision and game theory

EXAMPLES

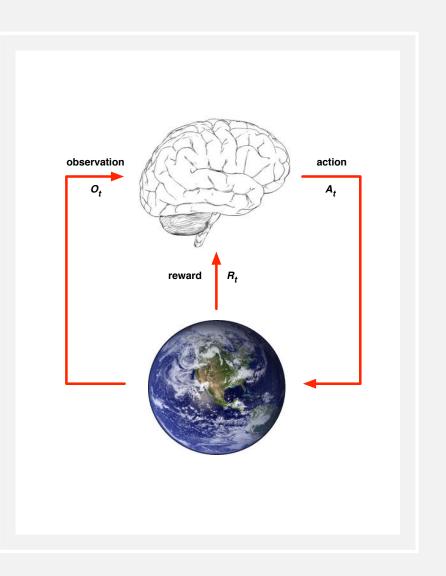
- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon, Go
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play **<u>Starcraft</u>**, Atari games better than humans
- Drive a car
- Play hockey

A NEW KIND OF LEARNING

- There is no supervisor, only a reward signal
 - No labels "wrong choice, right choice"
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

RL FRAMEWORK

- At each step t the **agent:**
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}



ACTING IN ACTION

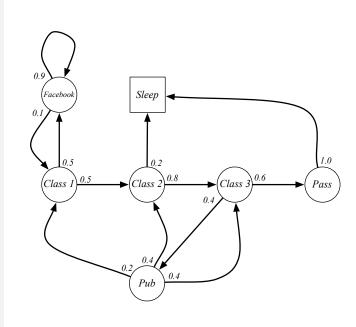
- <u>Autonomous Helicopter</u>
 - An example of **imitation learning**: start by observing human actions
- Learning to play video games
 - "Deep Q works best when it lives in the moment"
- Learn to flip pancakes

MARKOV DECISION PROCESSES

MARKOV PROCESS

- Aka Markov Chains
- Think about atomic representation of environment state (Russell and Norvig)
- Like state space in problem search
- A Markov process moves from one state to another with a certain probability
- Transition probability: $P(s_{t+1} = s' | s_t = s)$
- <u>Demo</u>

EXAMPLE: STUDENT LIFE



Sample episodes for Student Markov Chain starting from $S_1 = C1$

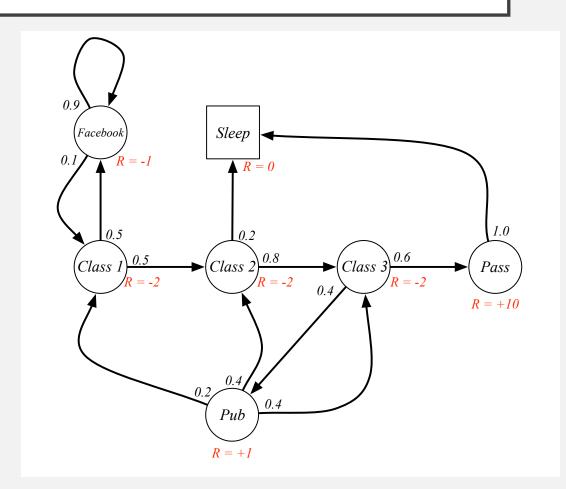
$$S_1, S_2, ..., S_7$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Source: David Silver

MARKOV REWARD PROCESS

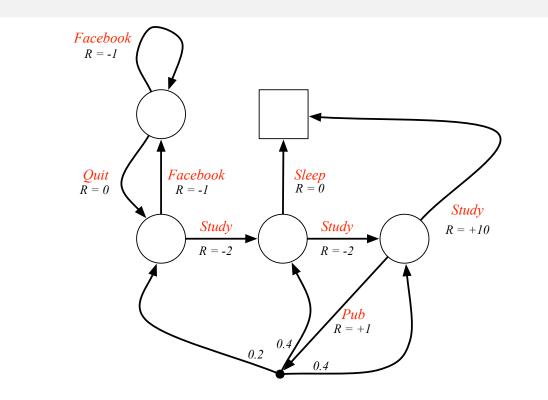
- Markov Process + Reward R_s associated with state
- More generally reward for *transition* R(s,s')



MARKOV DECISION PROCESSES

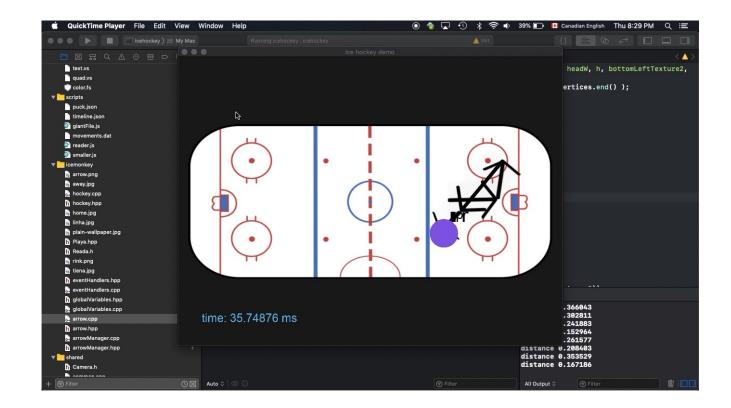
- Markov decision process (MDP) = Markov reward process + actions
- Transition probabilities, rewards depend on actions
- Markov game = MDP with actions, rewards for > I agent

EXAMPLE: STUDENT MARKOV DECISION PROCESS



HOCKEY EXAMPLE

What are the states? What are the rewards?



MARKOV CHAINS

Theory and Algorithms

Markov Decision Processes

EXERCISES

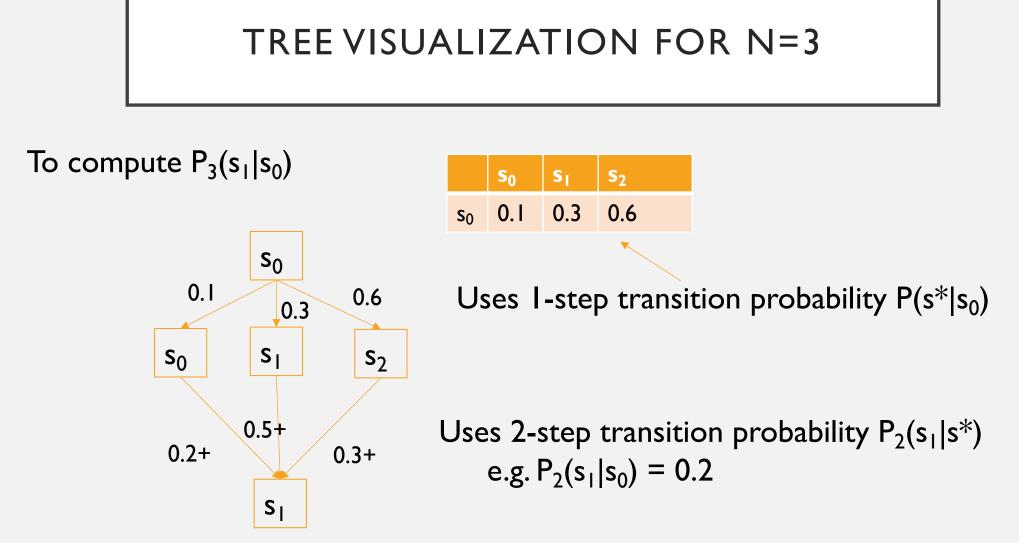
- Consider a Markov chain like the one shown in this demo
- What is the probability of the sequence AABB?
- What is the longest possible sequence of observations?

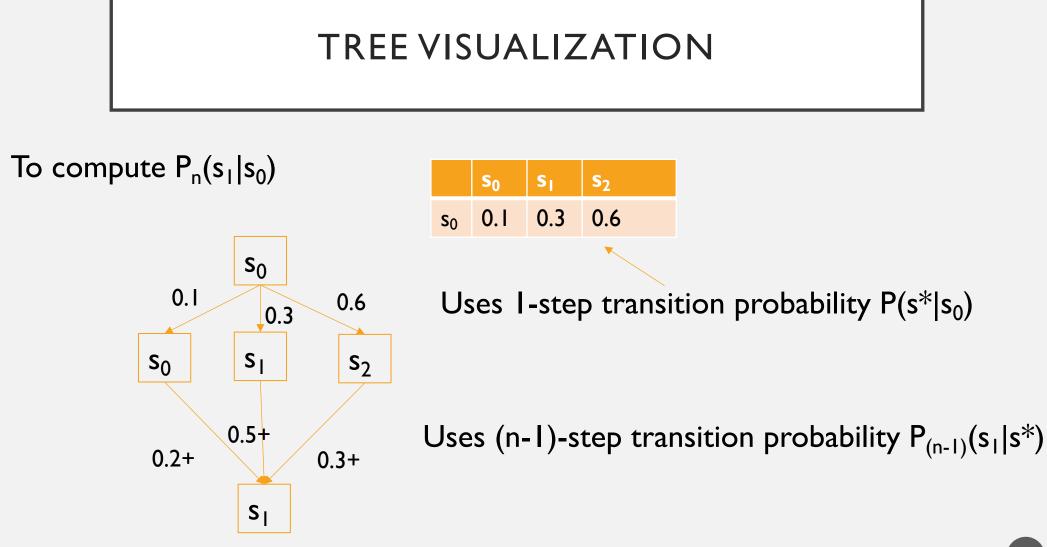
MULTI-STEP TRANSITIONS

- What is the chance that if we start in state s we will reach state s' after a fixed number of n steps?
 - Think: from initial state, what is the chance of reaching a goal state in n steps?
- E.g. in <u>this demo</u>, what is the chance that we reach state 3 from 0 after 3 steps?
- What we want is a step-n transition matrix how can we compute this efficiently?
- Notation: P_n(s'|s)

DYNAMIC PROGRAMMING

- Think Iterative Deepening: Build up transition matrices for I, 2,...,n-I, n steps.
- For n = I: Use given transition matrix $P(s'|s) = P_1(s'|s)$
- For $n+I: P_{n+I}(s'|s) = \sum_{s^*} P(s'|s^*) \times P_n(s'|s^*)$





Markov Decision Processes

21

INFINITE CHAINS

- What if we let the number of steps *n* go to infinity?
- It can be shown that under certain conditions on the chain, there is a limit transition probability matrix $P_{\infty}(s'|s)$
- This is the **stationary** transition matrix

PERFORMANCE METRIC FOR MDPS

FACTORED STATES

- In practice, RL uses a factored state representation
- > The state is defined by a list of values for a set of variables.
 - E.g. in hockey, can include score, game time, locations of players, location of puck
- If we have only 2 integer variables x and y, we can visualize states in a grid world

GRID WORLD EXAMPLE

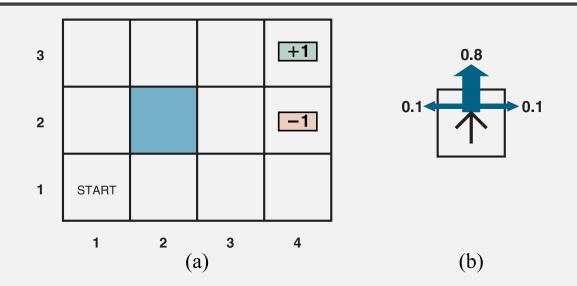


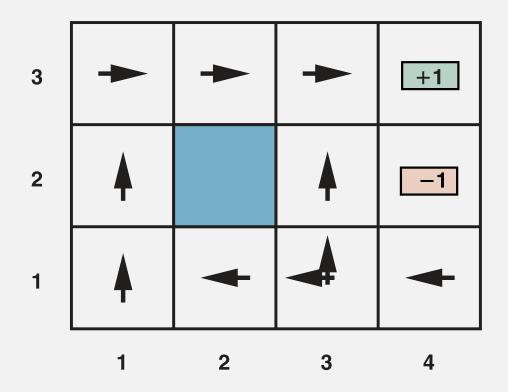
Figure 17.1 (a) A simple, stochastic 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the "intended" outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. Transitions into the two terminal states have reward +1 and -1, respectively, and all other transitions have a reward of -0.04.

Fig. Russell and Norvig 2010

POLICIES

- A deterministic **policy** π is a function that maps states to actions
 - π(s)=a
 - i.e. tells us how to act
- Can also be probabilistic $\pi(a|s)$
- Can be implemented using neural nets.

POLICY EXAMPLE



(a)

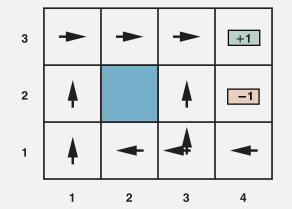
(b)

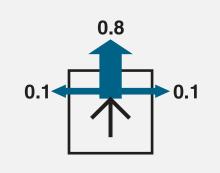
TRAJECTORIES

- A trajectory/episode is a sequence s₁,a₁,r₁,s₂, a₂, r₂,...,s_n,a_n,r_n
- Length of trajectory = n
- A policy π and MDP transition probabilities p(s'|s,a) determine a probability for every trajectory

=

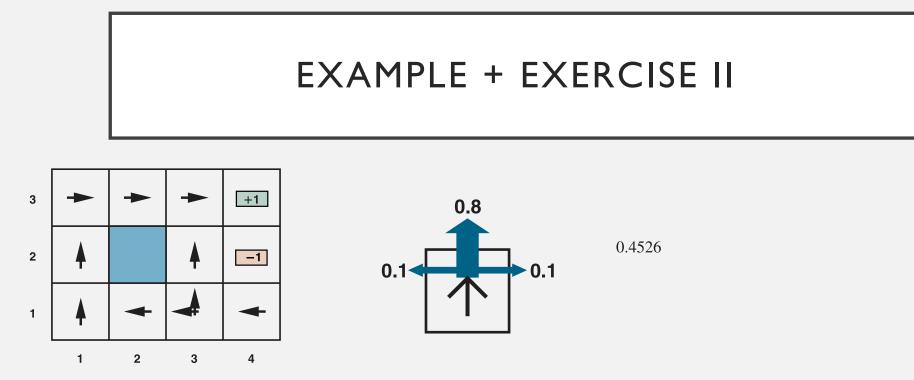
EXAMPLE + EXERCISE I





- Note that the trajectory probability depends on both
 ^{0.4526}the policy and the MDP
- Last action-reward not shown (partial trajectory)

State	Action	Reward	State	Action	Reward	State	Probability
(1,1)	Up	-0.04	(1,2)	Up	-0.04	(1,3)	0.8×0.8
(1,1)	Up	-0.04	(1,2)	Up	-0.04	(1,2)	?
(1,1)	Up	-0.04	(1,2)	Right	-0.04	(1,2)	?

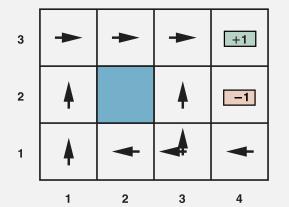


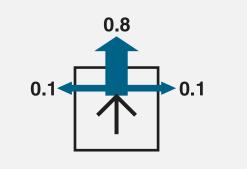
- Starting at state (1,1), how many trajectories are there of length
 - |
 - 2
 - 3

RETURNS AND DISCOUNTING

- The <u>return</u> of a trajectory is the total sum of rewards.
- Typically rewards are weighted by a discount factor γ between 0 and 1.
- Return = $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$

0.4526





γ =0.5 What if γ =1?

State	Action	Reward	State	Action	Reward	State	Probability	Return
(1,1)	Up	-0.04	(1,2)	Up	-0.04	(1,3)	0.8×0.8	-0.04- 0.5x0.04
(1,1)	Up	-0.04	(1,2)	Up	-0.04	(1,2)	0.8x0.2	?
(1,1)	Up	-0.04	(1,2)	Right	-0.04	(1,2)	0	?

Markov Decision Processes

WHY DISCOUNT?

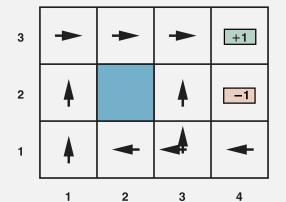
- Most Markov reward and decision processes are discounted. Why?
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Mathematically convenient to discount rewards for infinite trajectories (more below)
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
 - There may be a small probability that process ends
- Animal/human behaviour shows preference for immediate reward
- If all trajectories are guaranteed to terminate, we can use undiscounted sum $(\gamma = I)$

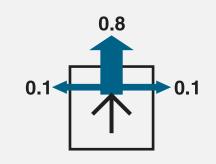
THE VALUE FUNCTION: PERFORMANCE METRIC FOR POLICIES

- Maximize expected return (total reward) of policy π from state s
 = ∑_{trajectories τ} p(τ|s,π) x return(τ)
- We write $V^{\pi}(s)$ for the **expected return** of policy π from state s
- A policy π is optimal if for every state s, the policy achieves the maximum expected return
- > A policy π^* is **optimal** if for any other policy π and for all states s $V^{\pi^*}(s) \ge V^{\pi}(s)$
- The value of an optimal policy is written as $V^*(s)$.

=

EXAMPLE + EXERCISE III





Add up the contributions to V^π(1,1)
 0.4 for the three trajectories shown
 γ = 0.5

State	Action	Reward	State	Action	Reward	State	Probability	Return
(1,1)	Up	-0.04	(1,2)	Up	-0.04	(1,3)	0.8×0.8	-0.04- 0.5×0.04
(1,1)	Up	-0.04	(1,2)	Up	-0.04	(1,2)	0.8×0.2	-0.04- 0.5×0.04
(1,1)	Up	-0.04	(1,2)	Right	-0.04	(1,2)	0	-0.04- 0.5×0.04

OPTIMAL POLICIES: EXAMPLE

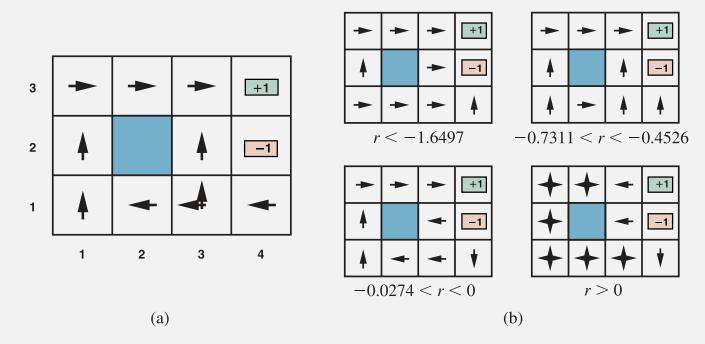


Figure 17.2 (a) The optimal policies for the stochastic environment with r = -0.04 for transitions between nonterminal states. There are two policies because in state (3,1) both *Left* and *Up* are optimal. (b) Optimal policies for four different ranges of r.

COMMENTS ON THE VALUE FUNCTION

- A powerful look-ahead concept.
 - Like searching through an entire search tree for expected success
- Game example: chance of winning, expected total score.
- Dr. Strange looks ahead
- Can also be computed by a neural network

OPTIMAL VALUE FUNCTION: EXAMPLE

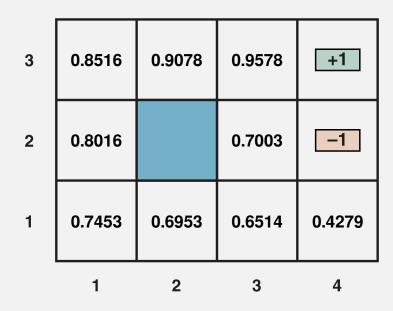


Figure 17.3 The utilities of the states in the 4×3 world with $\gamma = 1$ and r = -0.04 for transitions to nonterminal states.

DYNAMIC PROGRAMMING

- Searching through the space of policies is infeasible
- Instead use a dynamic programming approach: Find an optimal policy for 1,2,...,n,n+1 steps.
- Eventually can consider letting *n* go to infinity

POLICY EVALUATION

Finite Horizon Case

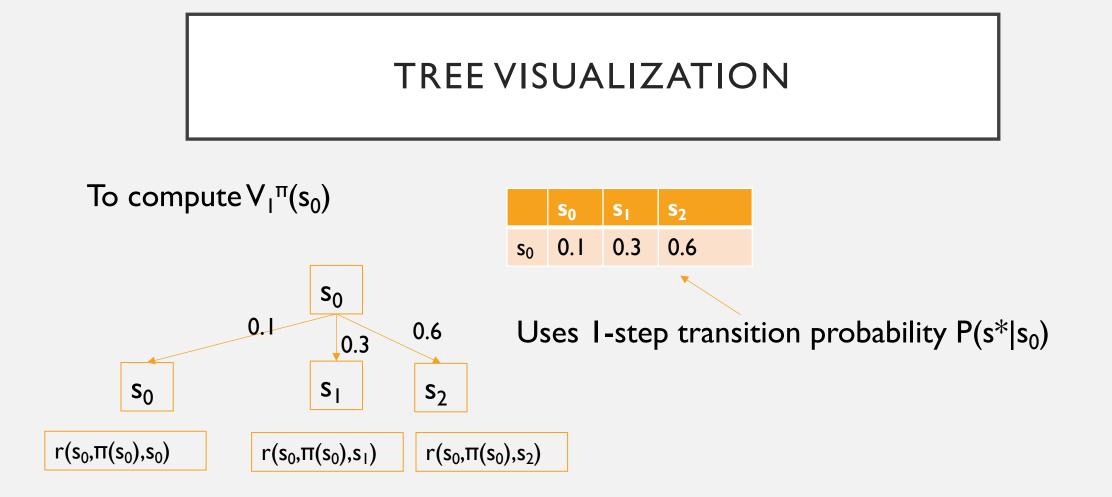
Markov Decision Processes

INITIALIZATION

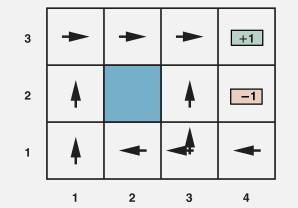
- We start by computing the value function $V^{\pi}(s)$ for a fixed policy π (not necessarily optimal).
- How can we compute the values $V_1^{\pi}(s)$ = expected return after 1 step?
- Directly from MDP: $V_1^{\pi}(s) = \sum_{s'} p(s' | \pi(s), s) \times r(s, a, s')$

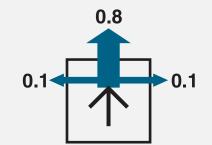
Probability of next state given current state and policy action

Reward associated with transition



EXAMPLE + EXERCISE





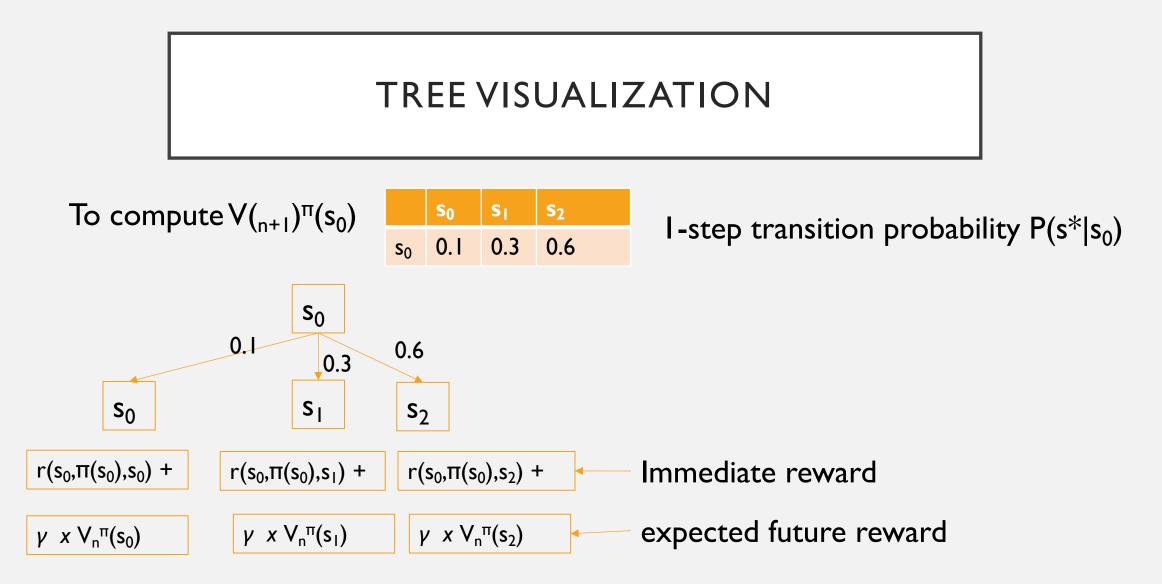
- Compute $V_I^{\pi}(I,I)$
- Exercise: what if $\pi(1,1)$ =Right?
- So which move is better Up or Right?

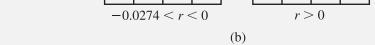
Next State	Reward	Probability	XReward	Sum =
(1,2)	-0.04	0.8	0.8 × -0.04	
(2,1)	-0.04	0.1	0.1 × -0.04	
(1,1)	-0.04	0.1	0.1 x -0.04	

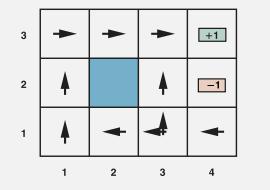
POLICY EVALUATION: BELLMAN UPDATE

- Suppose we have computed $V_n^{\pi}(s)$ = expected return after n steps
- How can we update to compute $V_{n+1}^{\pi}(s)$?
- $V_{n+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) \times [r(s, \pi(s), s') + \gamma V_n^{\pi}(s')]$

Immediate reward expected future reward



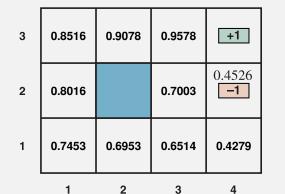




0.1

0.8 (a)

0.1



- Suppose that $V(_n)^{n}$ is as shown
- Compute $V(_{n+1})^{T}(1,1)$
- Assume no discounting

Markov Decision Processes

(a)

VALUE ITERATION: POLICY EVALUATION

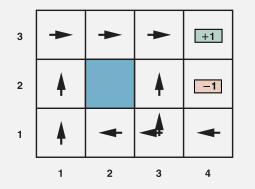
- Input: MDP, policy π , depth d
- $V^{\pi}(s) := 0$ for all s
- For i = 1 to d
 - For all s do $V^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) \times [r(s, \pi(s), s') + \gamma V^{\pi}(s')]$
- End for
- Return V^{π}

grid world demo

VALUE ITERATION FOR SOLVING AN MDP

Markov Decision Processes

EXERCISE



- Given the value function shown, what is the best move at
 - (I,I)
 - (2,3)?

Markov Decision Processes

3	0.8516	0.9078 1526	0.9578	+1
2	0.8016		0.7003	_1
1 (b)	0.7453	0.6953	0.6514	0.4279
	1	2	3	4

FROM VALUE TO POLICY

- It is easy to **extract** a policy from a value function:
- At each state, choose an action that maximizes expected future return
- $\pi^*(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s, a) \times [r(s, a, s') + \gamma V(s')]$ = $\operatorname{argmax}_a Q^*(s, a)$
- Q*(s,a) is known as the **action-value** function
 - = the expected total return if we choose action *a* in state s

VALUE ITERATION: OPTIMAL VALUE FUNCTION

- Input: MDP, policy π , depth d
- V*(s) := 0 for all s
- For i = 1 to d
 - For all s do $V^{*}(s) = \max_{a} \sum_{s'} P(s'|s, a) \times [r(s, a, s') + \gamma V^{\Pi}(s')]$ $= \max_{a} Q^{*}(s, a)$
- End for
- Return V^*

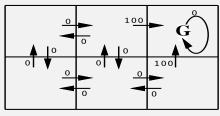
EXTENSION TO INFINITE HORIZON

- It is often useful to let the process run to any depth
- MDP may run forever ("neverending learning")
- Even if each trajectory is guaranteed to be finite, we may not know a definite upper bound in advance (termination uncertainty)
- Even if we know an upper bound in advance, it can introduce undesirable complications
 - E.g. every video game ends within 10 hours but at the beginning players don't think about the end
- Typically the value function changes very little at a modest depth (e.g. d = 13 for the NHL)

VALUE ITERATION: INFINITE HORIZON

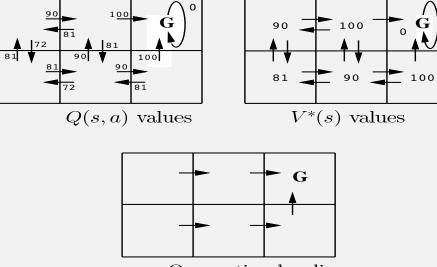
- Input: MDP, policy π, depth d
- V*(s) := 0 for all s
- Repeat until convergence
 - For all s do $V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) \times [r(s, a, s') + \gamma V^{\pi}(s')]$
- Return V*

RL CONCEPTS



r(s, a) (immediate reward) values

These 3 functions can be computed by neural networks



One optimal policy

SUMMARY

- Reinforcement Learning: learning to act
- Adds actions and rewards to a temporal Markov model
- Inference/Planning: find optimal policy given fully specified MDP
 - Value iteration: find optimal value function, extract policy
 - Policy iteration: alternate policy evaluation and policy extraction
- Learning problems (next)
 - Value function: Estimate the expected cumulative reward given a state for a given policy/ an optimal policy
 - Agent discovery: Learn an optimal policy