Classification: Linear Models

Oliver Schulte

Deep Learning

Classification Problems

Machine Learning as Program Synthesis
We can think of a machine learning system as a program that produces a program

Classifying Examples

- Many predictive problems in machine learning seek to build a program with the following I/O specs.
- <u>Input</u>: A list/tuple/vector of **features** $x_1, ..., x_m$
- <u>Output</u>: A discrete class label.
 - If there are only two possible classes/labels, we have a **binary** classification problem.

Examples

- Will the person vote conservative, given age, income, previous votes?
- Is the patient at risk of diabetes given body mass, age, blood test measurements?
- Predict Earthquake vs. nuclear explosion given body wave magnitude and surface wave magnitude.

Learning to Classify

- For classification, there are many datasets of the form (input₁,output₁),..., (input_n, output_n)
 - Mathematical notation: $(x_1, y_1), \ldots, (x_n, y_n)$.
 - If y is discrete $\rightarrow \underline{classification}$ problem
 - If y is continuous $\rightarrow \underline{regression}$ problem
 - > Supervised Learning: the data tell us the right answer
 - The basis of most neural net methods

Example: Classifying Digits

- Classify image as "7" vs. "not 7".
- Represent input image as vector x with 28x28 =784 numbers.
- Discussion: is this representation a good idea?

							•	\mathcal{I}						
	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	185	159	151	60	36	0	0	0	0	0	0	0	0	0
8	254	254	254	254	241	198	198	198	198	198	198	198	198	170
9	114	72	114	163	227	254	225	254	254	254	250	229	254	254
10	0	0	0	0	17	66	14	67	67	67	59	21	236	254
11	0	0	0	0	0	0	0	0	0	0	0	83	253	209
12	0	0	0	0	0	0	0	0	0	0	22	233	255	83
13	0	0	0	0	0	0	0	0	0	0	129	254	238	44
14	0	0	0	0	0	0	0	0	0	59	249	254	62	0
15	0	0	0	0	0	0	0	0	0	133	254	187	5	0
16	0	0	0	0	0	0	0	0	9	205	248	58	0	0
17	0	0	0	0	0	0	0	0	126	254	182	0	0	0
18	0	0	0	0	0	0	0	75	251	240	57	0	0	0
19	0	0	0	0	0	0	19	221	254	166	0	0	0	0
20	0	0	0	0	0	3	203	254	219	35	0	0	0	0
21	0	0	0	0	0	38	254	254	77	0	0	0	0	0
22	0	0	0	0	31	224	254	115	1	0	0	0	0	0
23	0	0	0	0	133	254	254	52	0	0	0	0	0	0
24	0	0	0	61	242	254	254	52	0	0	0	0	0	0
25	0	0	0	121	254	254	219	40	0	0	0	0	0	0
26	0	0	0	121	254	207	18	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Linear Classification Models

Linear Classification Models

- General Idea:
- 1. Simple linear model $y(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$
 - **w** is a list of <u>weight parameters</u> to be learned
- 2. Classify as positive if y(x) crosses a threshold, typically 0.
 - The **decision boundary** y(x)=0 defines a line for 2 input features, a hyperplane for > 2.

Example: Linear Separation

Example: Classifying Digits

- Classify input vector as "7" vs. "not 7".
- Represent input image as vector **x** with 28x28 =784 numbers.
- Target t = 1 for "positive", -1 for "negative".
- Prediction function $y: \mathbb{R}^{784} \rightarrow \mathbb{R}$.
- Classify **x** as positive if $y(\mathbf{x}) > 0$, negative o.w.
- Discussion: how can we handle multiple classes, e.g. digits from 1..10?

12/52

The Bias Weight

• Usually a linear includes a bias term (aka intercept, baseline) *b*.

- E.g. $y(x_1, x_2) = b + w_1 x_1 + w_2 x_2$
- Equivalently: add an imaginary constant 1 input $x_0 = 1$ and set $b = w_0$
 - E.g. $y(x_0 = 1, x_1, x_2) = \mathbf{w} \cdot \mathbf{x} = w_0 x_0 + w_1 x_1 + w_2 x_2 = w_0 1 + w_1 x_1 + w_2 x_2$

Strengths of Linear Classifiers

- Efficient to learn
- Interpretable
 - in many applications, the "effects" are most important which features receive the biggest weight.
- Can quantify predictive uncertainty
 - derive confidence bounds on accuracy of predictions.
- In machine learning, interpretability and quantifying uncertainty often go together, but trade off against accuracy.
- Science manages to combine all three.

Convexity and Linear Separability

- A set of points *C* is convex if for any two points **x**,**y** in *C*, fraction $0 \le \alpha \le 1$ we have $\alpha \mathbf{x} + (1 \alpha)\mathbf{y}$ is also in *C*.
- If two classes are linearly separable, they are convex.
- <u>Separating Hyperplane Theorem</u>: There exists a linear separator for two disjoint sets (classes) if and only if each each set (class) is convex.

Linear Separability and Convexity

Data with outliers removed: convex, separable

Original data: non-convex, non-separable

Nonseparability

- Linear discriminants can solve problems only if the classes can be separated by a line (hyperplane).
- Canonical example of non-separable problem is X-OR.

• <u>Illustration</u>

Responses to Nonseparability

Gradient Descent Learning

Learning a Linear Classifier

- Most learning for continuous data follows a decision-theoretic (Bayesian) approach to learning.
- 1. For a given data set D, define an **error function** E(w,D) that measures how well the weights w fit the data D.
- 2. Find \mathbf{w} that minimize the error for a given input data set D.
- 3. In neural net learning, the basic minimization algorithm is **gradient descent**.

<u>Illustration</u>

Gradient Descent: Choosing a direction

- Intuition: think about trying to find street number 1000 on a block. You stop and see that you are at number 100. Which direction should you go, left or right?
- You initially check every 50 houses or so where you are. What happens when you get closer to the goal 1000?
- <u>The fly and the window</u>: the fly sees that the wall is darker, so the light gradient goes down: bad direction.
- See here for <u>illustration</u> (around 38 sec)

Gradient Descent Scheme

- 1. Initialize weight vectors somehow.
 - Typically randomly, more on this later.
- 2. Update (with learning rate η)

$$w_{i+1} := w_i - \eta \frac{\partial E}{\partial w_i}$$

- 3. Until some convergence criterion is true
- Computational Complexity comment: assuming gradients are easy to compute, *every update step is linear in the number of weights*.
- > Learning time depends on number of steps required until convergence
- Usually impossible to predict in advance

Gradient Descent in One Dimension

• Update Rule

 $\mathbf{x} := \mathbf{x} - \eta \mathbf{f}'(\mathbf{x})$ where η is a step size Example:

- Try to find y that minimizes $f(y) = y^{2}$.
- Your current location is y = -3.
- What is f'(y)?
- Answer: the derivative function is *2y*.
- Evaluated at the location -3, the derivative is $\nabla = -6$.
- To minimize, we move in the opposite direction $-\nabla$.
- Letting the step size $\eta = 1$, your new location is -3 (-6) = -3 + 6 = 3

Gradient Descent In Multiple Dimensions

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

2	Λ	1	Г	0
2	Ŧ	/	Э	2

Gradient Descent: Example.

- Try to find x,y that minimize $f(x,y) = 3x + y^{2}$.
- Your current location is x = 10, y = -3.
- What is $\frac{\partial f}{\partial x}$? $\frac{\partial f}{\partial y}$?
- Answer: the gradient vector is (3, 2y).
- Evaluated at the location (10,-3), the gradient is $\nabla = (3, -6)$.
- To minimize, we move in the opposite direction $-\nabla$.
- Letting the step size η= 1, your new location is (10,-3) (3,-6) = (7, 3).

Gradient Descent: Exercise

- Try to find x,y that minimize $f(x,y) = 3x + y^{2}$.
- Your current location is x = 7, y = 3.
- The gradient vector is (3, 2y).
- Letting the step size $\eta = 1$, what is your new location?
- Demos
 - <u>Visualization</u>
 - Linear classifier illustration

Perceptron Learning

Defining an Error Function

- General idea:
- 1. Encode class label using a real number *t* for target.
 - e.g., "positive" = 1, "negative" = 0 or "negative" = -1.
 - This is the first example we see of *embedding*.
- 2. Measure error or **loss** by comparing continuous linear output *y* and class label code *t*.
- Obvious loss function is 0-1:
 0 if prediction correct, 1 otherwise.
- 4. In practice use *convex* upper bounds on 0-1 loss: $loss(y,t) \ge 0$ if prediction correct $loss(y,t) \ge 1$ if prediction false
- 5. Error function is sum of losses:

$$E(\boldsymbol{w}, D) = \sum_{j} loss(y(\boldsymbol{x}_{j}), t_{j})$$

where

- 1. j=1,...N indexes data points with target labels t_j
- 2. $y(\mathbf{x}_j)$ is the model output for data point \mathbf{x}_j (the output depends on weights \mathbf{w})

Dataset Error vs. Datapoint Loss

- The dataset error is the sum of datapoint loss.
 - The dataset error gradient is the sum of datapoint loss gradients:

$$\frac{\partial E(\boldsymbol{w}, D)}{\partial \boldsymbol{w}} = \sum_{j} \frac{\partial loss(y(\boldsymbol{x}_{j}), t_{j})}{\partial \boldsymbol{w}}$$

Perceptrons

- Perceptrons are a precursor to neural nets.
 - Analog implementation by Rosenblatt in the 1950s

The Perceptron Error Function

- Let y = 1 for positive class, y = -1 for negative
- An example is correctly classified if and only if $(x_i \cdot w)t_i > 0$
 - Exercise: Take a moment to verify this.
- <u>Perceptron Error</u> (fixed dataset *D*)

$$E(\boldsymbol{w}) = -\sum_{j \in M} (\boldsymbol{x}_j \cdot \boldsymbol{w}) t_j$$

where *M* is the set of misclassified inputs, the **mistakes**.

- Exercise: find the gradient of the error function for a single input \mathbf{x}_{i} .
- Solution:
 - 0 if \mathbf{x}_i is correctly classified.
 - $-\mathbf{x}_j \mathbf{t}_j \mathbf{O}. \mathbf{W}.$
- What is the gradient descent weight update formula?
- <u>Excel Demo</u>

32/52

Perceptron Learning Analysis

- **Theorem** If the classes are linearly separable, the perceptron learning algorithm converges to a weight vector that separates them.
- Number of steps to convergence has a theoretical upper bound.
 - In deep learning, usually no bound
- Sensitive to initialization.
- If classes are not linearly separable (e.g. X-OR), typically fails to converge.

Least-Squares Error Function

- Venerable idea (19th century)
- 1. For each data point, find the difference between predicted and observed value
- 2. Square the difference
- 3. Sum/average the squared differences
- Not popular for classification problems
- But widely used for regression

$$E(\boldsymbol{w}) = 1/2 \sum_{j} ((\boldsymbol{x}_j \cdot \boldsymbol{w}) - t_j)^2$$

Logistic Regression

From Values to Probabilities

- Key idea: instead of predicting a class label, predict the *probability of a class label*.
- E.g., p+ = P(class is positive | features) p- = P(class is negative | features)
- Naturally a continuous quantity.
- How to turn a <u>real number</u> *y* into a <u>probability</u> p+?

The Logistic Sigmoid Function

- Definition: $\sigma(y) = \frac{1}{1 + \exp(-y)}$
- Squeezes the real line into [0,1].
- Differentiable:

$$\frac{d\sigma}{dy} = \sigma(1 - \sigma)$$

Soft threshold interpretation

- If y > 0, $\sigma(y)$ goes to 1 very quickly.
- If y < 0, $\sigma(y)$ goes to 0 very quickly.

Probabilistic Interpretation

- The sigmoid can be interpreted in terms of the class odds p+/(1-p+).
- Exercise: Show the following implication for the class odds:

$$p^+ = \frac{1}{1 + \exp(-y)} \Longrightarrow \frac{p^+}{1 - p^+} = \exp(y)$$

• Therefore
$$y = \ln(\frac{p^+}{1-p^+}) = \text{the } \log \text{ class odds}.$$

Logistic Regression

In logistic regression, the log-class odds are a linear function of the input features:

$$\ln(\frac{p}{1-p^+}) = \mathbf{x} \bullet \mathbf{w}$$

- Learning logistic regression is conceptually similar to linear regression.
- Log-linear (or exponential) models are the "nicest" general family of statistical models.

Logistic Regression: Maximum Likelihood

- Notation: the probability that the n-th input example is positive = p_n^+ which depends on a weight vector **w**.
- Positive example has $t_j = 1$, negative $t_j = 0$.
- Then the likelihood assigned to N independent training data is $p(\mathbf{y}; \mathbf{w}) = \prod_{j=1}^{N} (p_j^+)^{t_j} (1 p_j^+)^{1-t_j}$

> The cross-entropy error

$$E(\boldsymbol{w}) = -\ln p(\boldsymbol{y}; \boldsymbol{w}) = -\sum_{j=1}^{N} t_j ln(p_j^+) + (1 - t_j) ln(1 - p_j^+)$$

• Equivalent to minimizing the KL divergence between the predicted class probabilities and the observed class frequencies.

Weight Learning

• Homework Exercise: find the gradient of the cross-entropy error function wrt a single input \mathbf{x}_n

$$E(\mathbf{w}) = -\sum_{j=1}^{N} t_j ln(p_j^+) + (1 - t_j) ln(1 - p_j^+)$$

- Hint: recall that $\frac{d\sigma}{dy} = \sigma(1-\sigma)$
- No closed form minimum since p_j^+ is non-linear function of input features.
- ➢ Use gradient descent. See <u>Stanford Demo</u> with softmax.
- Better approach: Use Iterative Reweighted Least Squares (IRLS).

Multi-Class Example

- Logistic regression can be extended to multiple classes.
- Here's a picture of what decision boundaries can look like.

Multi-Class Problems and the SoftMax Function

- Generic multi-class probabilistic prediction
- 1. Build prediction models $y_1(\mathbf{x}), y_2(\mathbf{x}), ... y_k(\mathbf{x})$, one for each of the k classes.
- 2. Transform the numbers into probabilities:
 - 1. Map each $y_i(\mathbf{x})$ to $\exp\{y_i(\mathbf{x})\}$
 - 2. Divide by the sum: $\sigma(\mathbf{x})_{j} = \exp\{y_{j}(\mathbf{x})\} / \Sigma i \exp\{y_{i}(\mathbf{x})\}$

Linear Algebra Notation

- Suppose we build 10 linear models y₁(**x**), y₂(**x**), ...y₁₀(**x**), for 10 classes.
- For a data matrix **X** , the linear model predictions for each data point can be written like this (including the bias terms) $\mathbf{Y} = \mathbf{X}\mathbf{W} + \mathbf{B}$
- What are the dimensions of **X**,**W**,**Y**,**B** and what do they represent?
- n: data points. f features for each input

Feature Transformations

Basis Functions

Basis Functions

- Powerful approach to non-separability
- Extract new features from the original data
 - Called basis functions in the context of regression
- Perform linear classification on the new features, not the original data
- + Instances may be linearly separable in the new feature space
- The new features may not be as meaningful or interpretable as the original ones.

- $\varphi_1(x_1, x_2)$ measures distance from left green cross
- $\varphi_2(x_1, x_2)$ measures closeness to centre green cross
- <u>3D demo</u>

Figure Bishop 4.12 see also

Visualize Transformation

Transformations can keep/increase/decrease original dimensionality

Summary I

- Linear classification: learn a linear function of features that separates positive and negative classes.
- Find feature weights by minimizing an error function.
- Different error functions used:
 - perceptron
 - cross-entropy (logistic regression)
 - max-margin (support vector machines, not discussed)
 - Least squares (for regression not classification)
- If classes are not linearly separable, no linear classifier is 100% accurate.
- Options:
 - use the best line you can \rightarrow logistic regression
 - use non-linear prediction function \rightarrow neural nets

Looking Ahead to Deep Learning

- Neural nets:
 - Hidden layers transform the input features
 - Output nodes perform linear classification/regression on the transformed features
- Deep neural nets: transform input features, transform the transformed features,, again and again
- The transformations are *learned* not fixed