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Probabilistic Models

• We now turn our focus to probabilistic models for pattern
recognition

• Probabilities express beliefs about uncertain events, useful
for decision making, combining sources of information

• Key quantity in probabilistic reasoning is the joint
distribution

p(x
1

, x
2

, . . . , xK)

where x
1

to xK are all variables in model
• Address two problems

• Inference: answering queries given the joint distribution
• Learning: deciding what the joint distribution is (involves

inference)
• All inference and learning problems involve manipulations

of the joint distribution
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Reminder - Three Tricks
• Bayes’ rule:

p(Y|X) = p(X|Y)p(Y)
p(X)

= ↵p(X|Y)p(Y)

• Marginalization:

p(X) =
X

y

p(X, Y = y) or p(X) =
Z

p(X, Y = y)dy

• Product rule:
p(X, Y) = p(X)p(Y|X)

• All 3 work with extra conditioning, e.g.:

p(X|Z) =
X

y

p(X, Y = y|Z)

p(Y|X, Z) = ↵p(X|Y, Z)p(Y|Z)
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Problems

• The joint distribution is large
• e. g. with K boolean random variables, 2

K entries
• Inference is slow, previous summations take O(2K) time
• Learning is difficult, data for 2

K parameters
• Analogous problems for continuous random variables
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Graphical Models

• Graphical Models provide a visual depiction of probabilistic
model

• Conditional indepence assumptions can be seen in graph
• Inference and learning algorithms can be expressed in

terms of graph operations
• We will look at 3 types of graph (can be combined)

• Directed graphs: Bayesian networks
• Undirected graphs: Markov Random Fields
• Factor graphs
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Bayesian Networks

• A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

• Syntax:
• a set of nodes, one per variable
• a directed, acyclic graph (link ⇡ “directly influences”)
• a conditional distribution for each node given its parents:

p(Xi|pa(Xi))

• In the simplest case, conditional distribution represented
as a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Weather Cavity

Toothache Catch

• Topology of network encodes conditional independence
assertions:

• Weather is independent of the other variables
• Toothache and Catch are conditionally independent given

Cavity
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Example

• I’m at work, neighbor John calls to say my alarm is ringing,
but neighbor Mary doesn’t call. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

• Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
• Network topology reflects causal knowledge:

• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call

• (Causal models and conditional independence seem
hardwired for humans!)
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Example contd.

.001
P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B
T
T
F
F

E
T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A
T
F

.90

.05

P(J|A) A
T
F

.70

.01

P(M|A)



Probabilistic Models Bayesian Networks Markov Random Fields

Global Semantics

• Global semantics defines the full joint
distribution as the product of the local
conditional distributions:

P(x
1

, . . . , xn) =
nY

i=1

P(xi|pa(Xi))

e.g., P(j ^ m ^ a ^ ¬b ^ ¬e) =

P(j|a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)

= 0.9 ⇥ 0.7 ⇥ 0.001 ⇥ 0.999 ⇥ 0.998

⇡ 0.00063

B E

J

A

M
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Conditional Independence in Bayesian Networks

• Recall again that a and b are conditionally independent
given c (a ?? b|c) if

• p(a|b, c) = p(a|c) or equivalently
• p(a, b|c) = p(a|c)p(b|c)

• Before we stated that links in a graph are ⇡ “direct
influences”

• We now develop a criterion for what conditional
independences (the absence of) links represent.

• This will be useful for general-purpose inference methods
• It provides a fast solution to the relevance problem:

determine whether X is relevant to Y given knowledge of Z.



Probabilistic Models Bayesian Networks Markov Random Fields

D-separation

• A general statement of conditional independence
• For sets of nodes A, B, C, check all paths from A to B in

graph
• If all paths are blocked, then A ?? B|C
• Path is blocked if:

• Arrows meet head-to-tail or tail-to-tail at a node in C
• Arrows meet head-to-head at a node—the arrows collide

and neither node nor any descendent is in C
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A Tale of Three Graphs - Part 1

c

a b

c

a b

• Note the path from a to b in the graph
• When c is not observed, path is open, a and b not

independent
• When c is observed, path is blocked, a and b independent

• In this case c is tail-to-tail with respect to this path
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A Tale of Three Graphs - Part 2

a c b

• The graph above means

p(a, b, c) = p(a)p(b|c)p(c|a)

• Again a and b not independent
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A Tale of Three Graphs - Part 2

a c b

• However, conditioned on c

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(b|c)
p(c)

p(c|a)

=
p(a)p(b|c)

p(c)
p(a|c)p(c)

p(a)| {z }
Bayes’ Rule

= p(a|c)p(b|c)

• So a ?? b|c
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A Tale of Three Graphs - Part 2

a c b a c b

• As before, the path from a to b in the graph
• When c is not observed, path is open, a and b not

independent
• When c is observed, path is blocked, a and b independent

• In this case c is head-to-tail with respect to this path



Probabilistic Models Bayesian Networks Markov Random Fields

A Tale of Three Graphs - Part 3

c

a b

• The graph above means

p(a, b, c) = p(a)p(b)p(c|a, b)

p(a, b) =
X

c

p(a)p(b)p(c|a, b)

= p(a)p(b)

• This time a and b are independent
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A Tale of Three Graphs - Part 3

c

a b

• However, conditioned on c

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(b)p(c|a, b)
p(c)

6= p(a|c)p(b|c) in general

• So a is dependent on b given c
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A Tale of Three Graphs - Part 3

c

a b

c

a b

• The behaviour here is different
• When c is not observed, path is blocked, a and b

independent
• When c is observed, path is unblocked, a and b not

independent
• In this case c is head-to-head with respect to this path
• Situation is in fact more complex, path is unblocked if any

descendent of c is observed
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Part 3 - Intuition

G

B F

G

B F

G

B F

• Binary random variables B (battery charged), F (fuel tank
full), G (fuel gauge reads full)

• B and F independent
• But if we observe G = 0 (false) things change

• e.g. p(F = 0|G = 0,B = 0) could be less than
p(F = 0|G = 0), as B = 0 explains away the fact that the
gauge reads empty

• Recall that p(F|G,B) = p(F|G) is another F ?? B|G
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Conditional Independence in Graphs

c

a b

c

a b

• Recall that for Bayesian Networks, conditional
independence was a bit complicated

• d-separation with head-to-head links
• We would like to construct a graphical representation such

that conditional independence is straight-forward path
checking



Probabilistic Models Bayesian Networks Markov Random Fields

Markov Random Fields

A

C
B

• Markov random fields (MRFs) contain one node per
variable

• Undirected graph over these nodes
• Conditional independence will be given by simple

separation, blockage by observing a node on a path
• e.g. in above graph, A ?? B|C
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Cliques

• A clique in a graph is a subset of nodes such
that there is a link between every pair of
nodes in the subset

• A maximal clique is a clique for which one
cannot add another node and have the set
remain a clique

x1

x2

x3

x4
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MRF Joint Distribution

• Note that nodes in a clique cannot be made conditionally
independent from each other

• So defining factors  (·) on nodes in a clique is “safe”
• The joint distribution for a Markov random field is:

p(x
1

, . . . , xK) =
1

Z

Y

C

 C(xC)

where xC is the set of nodes in clique C, and the product
runs over all maximal cliques

• Each  C(xC) � 0

• Z is a normalization constant
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MRF Joint - Terminology

• The joint distribution for a Markov random field is:

p(x
1

, . . . , xK) =
1

Z

Y

C

 C(xC)

• Each  C(xC) � 0 is called a potential function
• Z, the normalization constant, is called the partition

function:
Z =

X

x

Y

C

 C(xC)

• Z is very costly to compute, since it is a sum/integral over
all possible states for all variables in x

• Don’t always need to evaluate it though, will cancel for
computing conditional probabilities
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MRF Joint Distribution Example

• The joint distribution for a Markov random field
is:

p(x
1

, . . . , x
4

) =
1

Z

Y

C

 C(xC)

=
1

Z
 

123

(x
1

, x
2

, x
3

) 
234

(x
2

, x
3

, x
4

)

• Note that maximal cliques subsume smaller
ones:  

123

(x
1

, x
2

, x
3

) could include  
12

(x
1

, x
2

),
though sometimes smaller cliques are
explicitly used for clarity

x1

x2

x3

x4
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Hammersley-Clifford
• The definition of the joint:

p(x
1

, . . . , xK) =
1

Z

Y

C

 C(xC)

• Note that we started with particular conditional
independences

• We then formulated the factorization based on clique
potentials

• This formulation resulted in the right conditional
independences

• The converse is true as well, any strictly positive
distribution with the conditional independences given by
the undirected graph can be represented using a product
of clique potentials

• This is the Hammersley-Clifford theorem
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Energy Functions

• Often use exponential, which is non-negative, to define
potential functions:

 C(xC) = exp{�EC(xC)}

• Minus sign � by convention
• EC(xC) is called an energy function

• From physics, low energy = high probability
• This exponential representation is known as the Boltzmann

distribution
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Energy Functions - Intuition

• Joint distribution nicely rearranges as

p(x
1

, . . . , xK) =
1

Z

Y

C

 C(xC)

=
1

Z
exp{�

X

C

EC(xC)}

• Intuition about potential functions:  C are describing good
(low energy) sets of states for adjacent nodes

• An example of this is next
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Image Denoising

• Consider the problem of trying to correct (denoise) an
image that has been corrupted

• Assume image is binary
• Observed (noisy) pixel values yi 2 {�1,+1}
• Unobserved true pixel values xi 2 {�1,+1}
• Another application: face sketch synthesis from photos
http://people.csail.mit.edu/celiu/
FaceHallucination/fh.html.

http://people.csail.mit.edu/celiu/FaceHallucination/fh.html
http://people.csail.mit.edu/celiu/FaceHallucination/fh.html
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Image Denoising - Graphical Model

xi

yi

• Cliques containing each true pixel value xi 2 {�1,+1} and
observed value yi 2 {�1,+1}

• Observed pixel value is usually same as true pixel value
• Energy function �⌘xiyi, ⌘ > 0, lower energy (better) if xi = yi

• Cliques containing adjacent true pixel values xi, xj
• Nearby pixel values are usually the same
• Energy function ��xixj, � > 0, lower energy (better) if

xi = xj
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Image Denoising - Graphical Model

xi

yi

• Complete energy function:

E(x, y) = ��
X

{i,j}

xixj � ⌘
X

i

xiyi

• Joint distribution:

p(x, y) =
1

Z
exp{�E(x, y)}

• Or, as potential functions  n(xi, xj) = exp(�xixj),
 p(xi, yi) = exp(⌘xiyi):

p(x, y) =
1

Z

Y

i,j

 n(xi, xj)
Y

i

 p(xi, yi)



Probabilistic Models Bayesian Networks Markov Random Fields

Image Denoising - Inference

• The denoising query is arg max

x

p(x|y)
• Two approaches:

• Iterated conditional modes (ICM): hill climbing in x, one
variable xi at a time

• Simple to compute, conditional probability depends only on
observation plus neighbouring pixels.

• Demo http://cs.stanford.edu/people/karpathy/
visml/ising_example.html

• Graph cuts: formulate as max-flow/min-cut problem, exact
inference.

http://cs.stanford.edu/people/karpathy/visml/ising_example.html
http://cs.stanford.edu/people/karpathy/visml/ising_example.html
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Conclusion

• Graphical models depict conditional independence
assumptions

• Directed graphs (Bayesian networks)
• Factorization of joint distribution as conditional on node

given parents
• Undirected graphs (Markov random fields)

• Factorization of joint distribution as clique potential
functions
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