DEEP REINFORCEMENT LEARNING

Oliver Schulte Simon Fraser University CMPT 728 Introduction to Deep Learning

OUTLINE

- Reinforcement Learning as Function Learning
- Deep RL using Episodes
 - Monte Carlo Learning
 - Temporal Difference Learning
 - Policy Gradient
 - Actor-Critic

REINFORCEMENT LEARNING AS FUNCTION LEARNING

Deep Reinforcement Learning

3

STATE-BASED FUNCTIONS

- RL goal is to learn functions that map states to outputs
- Tabular/grid representation: I row per state
- <u>Factored representation</u>: state = list of features
- Neural net: #of features = #input nodes

State	Action	V(s)	Q(s, a)
SI	AI	0.345	0.012

REVIEW: RL CONCEPTS

r(s, a) (immediate reward) values

These 3 functions can be computed by neural networks

One optimal policy

WHEN TO USE FUNCTION APPROXIMATORS?

- State space is too large to handle by tabular representation
 - E.g. #possible chess positions > #atoms in the universe
- Curse of dimensionality: linearly more features \rightarrow exponentially more states
- States/actions are continuous
 - E.g. location, time in sports
 - Choose location, speed in video game
 - See <u>puckworld demo</u>

7

EXAMPLES

Deep Reinforcement Learning

8

TOY EXAMPLE: CART POLE

- <u>Open Al virtual</u> <u>environment</u>
- State = 4 numbers
- (pos cart t-l, angle t-l, pos cart t, angle t)
- Move Left or Right
- Reward = I for move that doesn't topple the cart

Figure 6.8: A cart pole

GAMES

- Board Games: input position of pieces
 - <u>TD-Gammon</u> for backgammon
 - Also chess, checkers
- Video Games: input (sequence of) video frames
 - Use CNN, maybe combined with LSTM
 - <u>Starcraft</u>

EXAMPLE: ALPHA* GAMES

- data generated by self-play
- Neural net outputs 2 quantities
 - . V(s), the win rate from a position
 - 2. P(a|s): vector of move probabilities
 - more promising moves should have higher probability
 - Like node ordering in tree search
- To play, performs a (Monte Carlo) tree search using the neural net output
- Watch the alphago <u>movie</u>

Deep Reinforcement Learning

Table 1: Dataset Example

GID	PID	GT	TID	X	Y	MP	GD	Action	OC	P	Velocity	TR	D	Angle	H/A	PN
1365	126	14.3	6	-11.0	25.5	Even	0	Lpr	S	Α	(-23.4, 1.5)	3585.7	3.4	0.250	A	4
1365	126	17.5	6	-23.5	-36.5	Even	0	Carry	S	A	(-4.0, -3.5)	3582.5	3.1	0.314	Α	4
1365	270	17.8	23	14.5	35.5	Even	0	Block	S	A	(-27.0, -3.0)	3582.2	0.3	0.445	Н	4
1365	126	17.8	6	-18.5	-37.0	Even	0	Pass	F	A	(0, 0)	3582.2	0.0	0.331	Α	4
1365	609	19.3	23	-28.0	25.5	Even	0	Lpr	S	H	(-30.3, -7.5)	3580.6	1.5	0.214	Н	5
1365	609	19.3	23	-28.0	25.5	Even	0	Pass	S	H	(0,0)	3580.6	0.0	0.214	Н	5

GID=GameId, PID=playerId, GT=GameTime, TID=TeamId, MP=Manpower, GD=Goal Difference, OC = Outcome, S=Succeed, F=Fail, P

= Team Possess puck, H=Home, A=Away, H/A=Team who performs action, TR = Time Remain, PN = Play Number, D = Duration

ICE HOCKEY EXAMPLES

- I've done a lot of work applying RL to ice hockey. Youtube talk.
- Using millions of events from NHL games

PIPELINE

 Computer Vision Techniques: Video tracking

• Play-by-play Dataset

• Large-scale Machine Learning

Spatial Projection

Q-value for the action "shot" action over the rink.

Value Ticker: Temporal Projection

MODEL-FREE LEARNING

Deep Reinforcement Learning

THE PROBLEM WITH TRANSITION PROBABILITIES

- Value iteration computes value functions, policy given transition probabilities
- In continuous/massive state spaces, working with transition probabilities is hard. Why?
 - Each transition occurs only once in data \rightarrow cannot estimate probability
 - Cannot represent in matrix
 - Cannot sum over all states, actions (recall Bellman equation)

LEARNING WITHOUT TRANSITION PROBABILITIES

- "model-free" learning = no transition probabilities
 - Unfortunate term, because we use a NN model to do "model-free" RL
- Learn target function directly from episodes
 - (Many people who know Markov decision processes but not reinforcement learning don't know about model-free learning)
- The main problem: what is the loss function?
 - No supervision signal

EPISODES

- A transition is a 5-item sequence s,a,r,s',a'
- An **episode** is a sequence of transitions $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_n, a_n, r_n$
- At every time t, we denote the episode return or (discounted) sum of future rewards as v_t .
- Examples:
 - Sports: each game is an episode. At each time t in the game, the return v_t specifies whether the team won or lost.
 - Tennis: each match is broken into set episodes which are broken into point episodes
 - Degree: each course is broken into components.
 - The return v_t specifies learning outcomes/grade at the end of course.

DRIVING HOME EXAMPLE

State	Elapsed Minutes	v _t : future time	Elapsed Minutes	v _t : future time
leaving office	0	43	0	44
reach car, raining	5	38	5	39
exit highway	20	23	22	22
behind truck	30	13	31	13
home street	40	3	41	3
arrive home	43	0	44	0

- Could have different states/actions in different episodes
 - E.g. some days no rain

MONTE CARLO LEARNING

Regression approach

Deep Reinforcement Learning

REGRESSION APPROACH

- Start with a dataset of episodes
- For every observed state s_t , make the return v_t the target.
- Train a model to predict (the expected value of) v_t given s_t as input.

REGRESSION APPROACH: EXAMPLE

State = X	$\mathbf{v}_{t} = \mathbf{Y}$
leaving office	43
reach car, raining	38
exit highway	23
behind truck	13
home street	3
arrive home	0
leaving office	44
reach car, raining	39
exit highway	22
behind truck	13
home street	3
arrive home	0

- Regression: Predict Y given X
 - People who know machine learning but not reinforcement learning use this approach
- Sports examples:
 - How to serve in volleyball
 - <u>Valuing Actions by Estimating Probabilities</u> in soccer
- Main Problem: regression methods assume i.i.d data
- But subsequent states have highly correlated return values
- ➢Slow learning

Deep Reinforcement Learning

TEMPORAL DIFFERENCE LEARNING

Learning a Value Function

TD LEARNING

- A key idea in CS RL, used in almost all RL AI systems
- Key intuition: compare 2 estimates
- I. Current return estimate $V(s_t)$
- 2. Return estimate from look ahead I time step: $r_t + \gamma V(s_{t+1})$
- 3. TD-error for NN gradient = $[r_t + \gamma V(s_{t+1}) V(s_t)]^2$
- Can be generalized to look-ahead multiple time steps

EXAMPLE

State	Elapsed Minutes	Predicted Time to Go	Predicted Total Time	TD-target	TD-error
leaving office	0	30	30	40 = 5 + 35	(40-30) ² =100
reach car, raining	5	35	40	30 = 15 + 15	(35-30) ² = 25
exit highway	20	15	35	20 = 10 + 10	(20-15) ² =25
behind truck	30	10	40	13 = 10 + 3	(13-10)2=9
home street	40	3	43	3 = 3 + 0	(3-3) ² =0
arrive home	43	0	43		

 $\gamma = I$

$$\Gamma D\text{-}error = [r_t + \gamma V(s_{t+1}) - V(s_t)]^2$$

Deep Reinforcement Learning

EXAMPLE

State	Elapsed Minutes	Predicted Time to Go	Predicted Total Time	TD-target	TD-error
leaving office	0	30	30	40 = 5 + 35	(40-30) ² =100
reach car, raining	5	35	40	30 = 15+15	$(35-40)^2 = 25$
exit highway	20	15	35	40	(40-35) ² =25
behind truck	30	10	40	43	(43-40) ² =9
home street	40	3	43	43	(43-43) ² =0
arrive home	43	0	43		

$$TD-error = [r_t + \gamma V(s_{t+1}) - V(s_t)]^2$$

Deep Reinforcement Learning

TD VS. MC (REGRESSION)

Changes recommended by Monte Carlo methods (α =1) Changes recommended by TD methods (α =1)

TD Pros

- Exploits temporal dependencies rather than ignoring them
- Can start learning before end of episode
- Deep versions converge faster than MC
- Technically:TD has lower variance, higher bias

POLICY LEARNING

POLICY LEARNING

- A policy maps a state to a distribution over a finite set of actions
 - Like multi-class learning
- Can be represented in a NN
- What is the objective function?

31

- Goal: learn a fast AIBO walk
- AIBO walk policy is controlled by 12 numbers (elliptical loci)
- Adapt these parameters by policy gradient
- Performance metric = field traversal time

FREQUENCY DECOMPOSITION OF VALUE FUNCTION

- Consider the following frequency expression for the value of a policy
 V^π(s₀) = ∑_s P^π(s|s₀) × ∑_a Q^π(s,a) × π(a|s)
- $P^{\pi}(s|s_0)$ is the stationary (limiting) frequency of reaching s starting from s_0
 - We have seen an efficient dynamic programming algorithm for computing this

ANALYZING POLICIES

• The frequency decomposition is often a nice way to explain the performance of an agent $\nabla^{\pi}(s_0) = \sum_{s} P^{\pi}(s|s_0) \times \sum_{a} Q^{\pi}(s,a) \times \pi(a|s)$ What will the agent do in state s?

How often does the How well does the agent reach state s? agent do in state s?

Hockey Example

- How often does a team achieve a powerplay state (s)?
- How successful are they with powerplay $(V^{\pi}(s))$?

$$V^{\pi}(s_0) = \sum_{s} P^{\pi}(s|s_0) \times \sum_{a} Q^{\pi}(s,a) \times \pi(a|s)$$

Estimate observed Estimate
#visits to initial state s₀ from
data

• Amazingly, for gradient descent we can treat P and Q as fixed!

- Assume the policy is parametrized as π_{θ}
 - E.g., θ = weights in neural network
 - Constant independent of policy

Then
$$\frac{dV^{\pi_{\theta}}(s_{0})}{d\theta} = cE_{\pi}[Q^{\pi}(s,a)\frac{d\ln(\pi(a|s))}{d\theta}]$$

- Expected number of times (s,a) occurs under policy Log pre-
- Can simply sum over all data points

Log probability of choosing action *a* in state *s*

POLICY OPTIMIZATION OPTIONS

- Average over observed episodes one of the following.
- <u>Monte Carlo</u>: $\operatorname{argmax}_{\pi} \sum_{t} \pi(a_t | s_t) \times v_t(s_t, a_t)$ where $v_t(s_t, a_t)$ is the observed episode return as in Monte Carlo learning
- <u>Actor-Critic</u>: $\operatorname{argmax}_{\pi} \sum_{t} \pi(a_t | s_t) \times Q'(s_t, a_t)$ where Q' is a value function estimated by the <u>critic</u>
 - Typically using TD-learning
- Advantage Actor-Critic
 - replace $Q'(s_t, a_t)$ by $Q'(s_t, a_t) V'(s_t) =$ "advantage"/impact
 - Advantage values have lower variance than Q values \rightarrow easier to learn
 - Current state of the art
 - <u>Demo</u>

EXAMPLE: REINFORCE ALGORITHM

- I. Initialize θ
- For each episode <s₁,a₁,r₁,...,s_T,a_T,r_T> do for t=1 to T do θ:= θ + α Δ_θ log(π_θ(a_t|s_t)) v_t(s_t,a_t) end for end for
 Return θ

DATA GATHERING ISSUES

ACTIONS INFLUENCE DATA

- A fundamental difference between RL and passive learning is that the agent's <u>actions influence their observations</u>.
- >No fixed dataset to analyze
- Actions influence not only the rewards but also the quality of the information the agent receives
- Hockey example: maybe we need to place risky bets to get information about the payoffs?

EXPLORATION VS. EXPLOITATION

- An agent needs to do both
 - Select actions that seem optimal to keep high rewards
 - "exploit" its current knowledge
 - Select new actions to gather enough data to estimate a value function
 - "explore" the state space

BASIC EXPLORATION APPROACHES

- A simple but often effective approach is <u>ε-greedy</u>
 - With probability ε , select a random action (e.g. $\varepsilon = 10\%$ of the time)
 - With probability 1-ε, select an action that is optimal according to the current value function
 - Grid world demo with TD learning
- <u> ϵ -decreasing</u>: decrease ϵ with every time step
 - Like a learning rate
- Policy-driven: sample actions from *probabilistic* policy
 - Works best with policy gradient methods
- State-of-the-Art: <u>Upper Confidence Bound (UCB)</u>
 - Estimate uncertainty in value functions at a state
 - Visit states with more uncertainty more often

EXPERIENCE REPLAY

- Recall that temporally successive states have highly correlated values
- > Successive updates change value functions only little
- Possible solution:
- Store transitions $s_{t-1}, a_{t-1}, r_{t-1}, s_t, a_t$
- 2. Sample randomly from past transitions to update
- But is throwing away temporal information really a good thing?

SUMMARY OF APPROACHES

- Value-based
 - Learn Value Function
 - Implicit policy (e.g. ε–greedy)
- Policy-based
 - No Value Function
 - Learnt policy
- Actor-Critic
 - Learn value function
 - Learnt policy

46

SUMMARY RL

- Reinforcement learning aims to learn various key functions
- Value function, policy
- Can be naturally implemented as neural networks
- In large/infinite state spaces, need model-free learning
- Learning techniques for value functions
 - Monte-Carlo: reduce to regression
 - Temporal difference: make different value estimates at different times consistent with each other

Deep Reinforcement Learning