
DEEP REINFORCEMENT LEARNING

Oliver Schulte

Simon Fraser University

CMPT 728

Introduction to Deep Learning

OUTLINE

• Reinforcement Learning as Function Learning

• Deep RL using Episodes

• Monte Carlo Learning

• Temporal Difference Learning

• Policy Gradient

• Actor-Critic

2

REINFORCEMENT LEARNING AS
FUNCTION LEARNING

3

STATE-BASED FUNCTIONS

• RL goal is to learn functions that map states
to outputs

• Tabular/grid representation: 1 row per state

• Factored representation: state = list of
features

• Neural net: #of features = #input nodes

4

State Action V(s) Q(s, a)

S1 A1 0.345 0.012

S1

V(S1)

Q(S1, A1)

REVIEW: RL CONCEPTS

G
100

100

0

0

0

0
0

0

0

0
0

0

0

G
10090

100

81

90

81
81

90
81

72

72
81

0

G100

10090

90

81

0

G

These 3 functions
can be computed by
neural networks

5

WHEN TO USE FUNCTION
APPROXIMATORS?

• State space is too large to handle by tabular representation
• E.g. #possible chess positions > #atoms in the universe

• Curse of dimensionality: linearly more features→ exponentially more states
• States/actions are continuous
• E.g. location, time in sports

• Choose location, speed in video game

• See puckworld demo

6

https://cs.stanford.edu/people/karpathy/reinforcejs/puckworld.html

7

EXAMPLES

8

TOY EXAMPLE:
CART POLE

• Open AI virtual
environment

• State = 4 numbers
• (pos cart t-1, angle t-1,

pos cart t, angle t)
• Move Left or Right
• Reward = 1 for move

that doesn’t topple the
cart

124 CHAPTER 6. DEEP REINFORCEMENT LEARNING

Figure 6.8: A cart pole

6.4 Policy Gradient Methods

We now turn to an Open AI Gym problem that cannot be handled by stan-
dard tabular methods, cart pole, and a new-deep RL method, policy gradi-
ents. A “cart pole,” as shown in Figure 6.8, is a cart on a one-dimensional
track. It has a pole attached to it by a sticky joint so that when the cart is
propelled in one direction or another the top of the pole moves left or right
according to the dictates of Newton’s laws. A state consists of four values
— the postion of the cart and the angle of the pole after the previous and
current move. We give values at consecutive times to enable the program
to figure out the direction of motion. There are two actions the player can
make: propel the cart to the right or to the left. The impulse always has the
same magnitude. Should the cart move too far to the right or left, or should
the top of the pole move too far from perpendicular, step signals that the
current game is over, and we need to reset to start a new one. We get one
unit of reward for every move we make before failing. Naturally, the goal is
to keep the cart and pole well positioned for as long as possible. Since the
state corresponds to a four-tuple of real numbers, the number of possible
states is infinite, so tabular methods are ruled out.

So far we have used our NN models to approximate theQ function for our
MDP. In this section we show a method in which the NN models the policy
function directly. Again we are concerned with model-free learning, and
again we adopt the paradigm of wandering around the game environment,
initially choosing actions mostly at random but moving over to using the NN
recommendation. As pretty much everywhere in this chapter, the burning
problem is finding an appropriate loss function, since we do not know the
correct actions we ought to be taking.

9

https://www.youtube.com/watch?v=46wjA6dqxOM
https://www.youtube.com/watch?v=46wjA6dqxOM

GAMES

• Board Games: input position of pieces

• TD-Gammon for backgammon

• Also chess, checkers

• Video Games: input (sequence of) video frames

• Use CNN, maybe combined with LSTM

• Starcraft

10

https://en.wikipedia.org/wiki/TD-Gammon
https://www.youtube.com/watch?v=cUTMhmVh1qs

EXAMPLE: ALPHA* GAMES

• data generated by self-play

• Neural net outputs 2 quantities

1. V(s), the win rate from a position

2. P(a|s): vector of move probabilities

• more promising moves should have higher probability

• Like node ordering in tree search

• To play, performs a (Monte Carlo) tree search using the neural net output

• Watch the alphago movie
11

https://www.netflix.com/search?q=alphago&jbv=80190844&jbp=0&jbr=0

ICE HOCKEY EXAMPLES

• I’ve done a lot of work applying RL to ice hockey.
Youtube talk.
• Using millions of events from NHL games

12

https://www.youtube.com/watch?v=vgivN3fhs9g

PIPELINE

Deep Reinforcement Learning

• Computer Vision Techniques:
Video tracking

• Play-by-play Dataset

• Large-scale Machine Learning

13

Spatial Projection
Q-value for the action “shot” action over the rink.

14

Value Ticker: Temporal Projection

Q
(s
,a
)

GameTime
15

MODEL-FREE LEARNING

16

THE PROBLEM WITH TRANSITION
PROBABILITIES

• Value iteration computes value functions, policy given transition
probabilities

• In continuous/massive state spaces, working with transition
probabilities is hard. Why?

• Each transition occurs only once in data → cannot estimate probability

• Cannot represent in matrix

• Cannot sum over all states, actions (recall Bellman equation)

17

LEARNING WITHOUT TRANSITION
PROBABILITIES

• ”model-free” learning = no transition probabilities

• Unfortunate term, because we use a NN model to do “model-free” RL

• Learn target function directly from episodes

• (Many people who know Markov decision processes but not
reinforcement learning don’t know about model-free learning)

• The main problem: what is the loss function?

• No supervision signal

18

EPISODES

• A transition is a 5-item sequence s,a,r,s’,a’
• An episode is a sequence of transitions s0,a0,r0,s1,a1,r1,…,sn,an,rn
• At every time t, we denote the episode return or (discounted) sum of future rewards as vt.

• Examples:
• Sports: each game is an episode. At each time t in the game, the return vt specifies whether the team

won or lost.

• Tennis: each match is broken into set episodes which are broken into point episodes

• Degree: each course is broken into components.
• The return vt specifies learning outcomes/grade at the end of course.

19

DRIVING HOME EXAMPLE

State Elapsed Minutes vt: future time Elapsed Minutes vt: future time

leaving office 0 43 0 44

reach car, raining 5 38 5 39

exit highway 20 23 22 22

behind truck 30 13 31 13

home street 40 3 41 3

arrive home 43 0 44 0

20

• Could have different states/actions in different episodes
• E.g. some days no rain

MONTE CARLO LEARNING

Regression approach

21

REGRESSION APPROACH

• Start with a dataset of episodes

• For every observed state st, make the return vt the target.

• Train a model to predict (the expected value of) vt given st
as input.

22

REGRESSION APPROACH: EXAMPLE

State = X vt = Y

leaving office 43

reach car, raining 38

exit highway 23

behind truck 13

home street 3

arrive home 0

leaving office 44

reach car, raining 39

exit highway 22

behind truck 13

home street 3

arrive home 0

• Regression: Predict Y given X
• People who know machine learning but not

reinforcement learning use this approach
• Sports examples:
• How to serve in volleyball
• Valuing Actions by Estimating Probabilities in soccer

• Main Problem: regression methods assume i.i.d data
• But subsequent states have highly correlated return

values
ØSlow learning

23

https://arxiv.org/pdf/1802.07127.pdf

TEMPORAL DIFFERENCE LEARNING

Learning a Value Function

24

TD LEARNING

• A key idea in CS RL, used in almost all RL AI systems

• Key intuition: compare 2 estimates

1. Current return estimate V(st)

2. Return estimate from look ahead 1 time step: rt + γV(st+1)

3. TD-error for NN gradient = [rt + γV(st+1) - V(st)]2

• Can be generalized to look-ahead multiple time steps

25

EXAMPLE

27

State Elapsed
Minutes

Predicted
Time to Go

Predicted
Total Time

TD-target TD-error

leaving office 0 30 30 40 = 5 + 35 (40-30)2=100

reach car, raining 5 35 40 30 = 15 + 15 (35-30)2 = 25

exit highway 20 15 35 20 = 10 + 10 (20-15)2=25

behind truck 30 10 40 13 = 10 + 3 (13-10)2=9

home street 40 3 43 3 = 3 + 0 (3-3)2=0

arrive home 43 0 43

TD-error = [rt + γV(st+1) - V(st)]2 γ=1

EXAMPLE

28

State Elapsed
Minutes

Predicted
Time to Go

Predicted
Total Time

TD-target TD-error

leaving office 0 30 30 40 = 5 + 35 (40-30)2=100

reach car, raining 5 35 40 30 = 15+15 (35-40)2 = 25

exit highway 20 15 35 40 (40-35)2=25

behind truck 30 10 40 43 (43-40)2=9

home street 40 3 43 43 (43-43)2=0

arrive home 43 0 43

TD-error = [rt + γV(st+1) - V(st)]2

TD VS. MC (REGRESSION)

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by
Monte Carlo methods (!=1)

Changes recommended
by TD methods (!=1) TD Pros

• Exploits temporal dependencies rather
than ignoring them
• Can start learning before end of episode
• Deep versions converge faster than MC
• Technically: TD has lower variance, higher

bias

29

POLICY LEARNING

30

POLICY
LEARNING

• A policy maps a state
to a distribution over a
finite set of actions

• Like multi-class learning

• Can be represented in
a NN

• What is the objective
function?

126 CHAPTER 6. DEEP REINFORCEMENT LEARNING

Figure 6.9: Deep learning architecture for REINFORCE

the pole is learning to the right at the start, and we chose to go left, making
the pole lean still further to the right. The reader should see that, all else
equal, the value of D0 is smaller in this case than it would have been if we
had chosen to move right — the reason being that (all else equal) if the first
move is good, the pole and cart should remain in bounds longer (n is larger)
and the D values are larger. So Equation 6.12 gives a higher loss to a bad
a0 than a good one, thus training the NN to prefer the good one.

This architecture/loss-function combination is known as REINFORCE.
Figure 6.9 shows the basic architecture. The important thing to notice is
that the NN here is used in two di↵erent ways. First, looking at the left-
hand side, we give the NN a single state which, as mentioned earlier, is a
four-tuple of reals indicating the position and velocity of the cart and the
pole-head. In this mode we get out probabilities for taking the two possible
actions, as indicated in the middle-right of the figure. When in this mode
we do not provide the placeholder for the rewards or actions with values
since (a) we don’t know them, and (b) we don’t need them since we are not
computing the loss at this point. After we have made all the moves for an
entire game, we use the NN in the other mode. This time we give it the
sequence of actions and the rewards, and this time we ask it to compute
the loss and perform back propagation. In training mode we are, in a sense,
computing actions in two di↵erent ways. First, we give the NN the states
we go through, and for each state, the policy computation layers compute
the action probabilities. Second, we directly feed in the actions taken as
a placeholder. This is because when deciding on actions in game-playing

31

EXAMPLE: TRAINING ROBOT TO WALK

• Goal: learn a fast AIBO walk

• AIBO walk policy is controlled
by 12 numbers (elliptical loci)

• Adapt these parameters by
policy gradient

• Performance metric = field
traversal time

32

Lecture 7: Policy Gradient

Finite Di↵erence Policy Gradient

AIBO example

Training AIBO to Walk by Finite Di↵erence Policy Gradient

those parameters to an Aibo and instructing it to time itself
as it walked between two fixed landmarks (Figure 5). More
efficient parameters resulted in a faster gait, which translated
into a lower time and a better score. After completing an
evaluation, the Aibo sent the resulting score back to the host
computer and prepared itself for a new set of parameters to
evaluate.6

When implementing the algorithm described above, we
chose to evaluate t = 15 policies per iteration. Since there
was significant noise in each evaluation, each set of parameters
was evaluated three times. The resulting score for that set of
parameters was computed by taking the average of the three
evaluations. Each iteration therefore consisted of 45 traversals
between pairs of beacons and lasted roughly 7 1

2 minutes. Since
even small adjustments to a set of parameters could lead to
major differences in gait speed, we chose relatively small
values for each ✏j . To offset the small values of each ✏j , we
accelerated the learning process by using a larger value of
� = 2 for the step size.

A

B
C

A’

LandmarksLandmarks

C’

B’

Fig. 5. The training environment for our experiments. Each Aibo times itself
as it moves back and forth between a pair of landmarks (A and A’, B and B’,
or C and C’).

IV. RESULTS

Our main result is that using the algorithm described in
Section III, we were able to find one of the fastest known Aibo
gaits. Figure 6 shows the performance of the best policy of
each iteration during the learning process. After 23 iterations
the learning algorithm produced a gait (shown in Figure 8)
that yielded a velocity of 291 ± 3 mm/s, faster than both the
best hand-tuned gaits and the best previously known learned
gaits (see Figure 1). The parameters for this gait, along with
the initial parameters and ✏ values are given in Figure 7.

Note that we stopped training after reaching a peak policy at
23 iterations, which amounted to just over 1000 field traversals
in about 3 hours. Subsequent evaluations showed no further
improvement, suggesting that the learning had plateaued.

6There is video of the training process at:
www.cs.utexas.edu/˜AustinVilla/legged/learned-walk/

180

200

220

240

260

280

300

0 5 10 15 20 25

Ve
lo

ci
ty

 (m
m

/s
)

Number of Iterations

Velocity of Learned Gait during Training

(UT Austin Villa)

Learned Gait

Hand!tuned Gait

Hand!tuned Gait

Hand!tuned Gait
(UNSW)

(UNSW)

(German Team)

(UT Austin Villa)
Learned Gait

Fig. 6. The velocity of the best gait from each iteration during training,
compared to previous results. We were able to learn a gait significantly faster
than both hand-coded gaits and previously learned gaits.

Parameter Initial � Best
Value Value

Front locus:
(height) 4.2 0.35 4.081

(x offset) 2.8 0.35 0.574
(y offset) 4.9 0.35 5.152

Rear locus:
(height) 5.6 0.35 6.02

(x offset) 0.0 0.35 0.217
(y offset) -2.8 0.35 -2.982

Locus length 4.893 0.35 5.285
Locus skew multiplier 0.035 0.175 0.049
Front height 7.7 0.35 7.483
Rear height 11.2 0.35 10.843
Time to move

through locus 0.704 0.016 0.679
Time on ground 0.5 0.05 0.430

Fig. 7. The initial policy, the amount of change (�) for each parameter, and
best policy learned after 23 iterations. All values are given in centimeters,
except time to move through locus, which is measured in seconds, and time
on ground, which is a fraction.

There are a couple of possible explanations for the amount
of variation in the learning process, visible as the spikes in
the learning curve shown in Figure 6. Despite the fact that we
averaged over multiple evaluations to determine the score for
each policy, there was still a fair amount of noise associated
with the score for each policy. It is entirely possible that
this noise led the search astray at times, causing temporary
decreases in performance. Another explanation for the amount
of variation in the learning process could be the relatively large
step size (� = 2) used to adjust the policy at the end of each
iteration. As mentioned previously, we chose a large step size
to offset the relatively small values of ✏. While serving to
accelerate the rate of learning, this large step size might also
have caused the search process to periodically jump into a

Our team (UT Austin Villa [10]) first approached the gait
optimization problem by hand-tuning a gait described by half-
elliptical loci. This gait performed comparably to those of
other teams participating in RoboCup 2003. The work reported
in this paper uses the hand-tuned UT Austin Villa walk as a
starting point for learning. Figure 1 compares the reported
speeds of the gaits mentioned above, both hand-tuned and
learned, including that of our starting point, the UT Austin
Villa walk. The latter walk is described fully in a team
technical report [10]. The remainder of this section describes
the details of the UT Austin Villa walk that are important to
understand for the purposes of this paper.

Hand-tuned gaits Learned gaits
CMU German UT Austin Hornby
(2002) Team Villa UNSW 1999 UNSW
200 230 245 254 170 270

Fig. 1. Maximum forward velocities of the best current gaits (in mm/s) for
different teams, both learned and hand-tuned.

The half-elliptical locus used by our team is shown in
Figure 2. By instructing each foot to move through a locus of
this shape, with each pair of diagonally opposite legs in phase
with each other and perfectly out of phase with the other two
(a gait known as a trot), we enable the Aibo to walk. Four
parameters define this elliptical locus:
1) The length of the ellipse;
2) The height of the ellipse;
3) The position of the ellipse on the x axis; and
4) The position of the ellipse on the y axis.
Since the Aibo is roughly symmetric, the same parameters

can be used to describe loci on both the left and right side
of the body. To ensure a relatively straight gait, the length
of the ellipse is the same for all four loci. Separate values
for the elliptical height, x, and y positions are used for the
front and back legs. An additional parameter which governs
the turning rate of the Aibo is used to determine the skew of
all four ellipses in the x-y plane, a technique introduced by
the UNSW team [11].3 The amount of skew is determined by
the product of the angle at which the Aibo wishes to move
and this skew multiplier parameter.
All told, the following set of 12 parameters define the Aibo’s

gait [10]:
• The front locus (3 parameters: height, x-pos., y-pos.)
• The rear locus (3 parameters)
• Locus length
• Locus skew multiplier in the x-y plane (for turning)
• The height of the front of the body
• The height of the rear of the body
• The time each foot takes to move through its locus
• The fraction of time each foot spends on the ground

3Even when walking directly forward, noise in an Aibo’s motions occa-
sionally requires that the four ellipses be skewed to allow the Aibo to execute
small turns in order to stay on course.

z

x
y

Fig. 2. The elliptical locus of the Aibo’s foot. The half-ellipse is defined by
length, height, and position in the x-y plane.

During the American Open tournament in May of 2003,4
UT Austin Villa used a simplified version of the parameter-
ization described above that did not allow the front and rear
heights of the robot to differ. Hand-tuning these parameters
generated a gait that allowed the Aibo to move at 140 mm/s.
After allowing the front and rear height to differ, the Aibo was
tuned to walk at 245 mm/s in the RoboCup 2003 competition.5
Applying machine learning to this parameter optimization
process, however, allowed us to significantly improve the
speed of the Aibos, as described in the following section.

III. LEARNING THE WALK
Given the parameterization of the walk defined in Section II,

our task amounts to a parameter optimization problem in a
continuous 12-dimensional space. For the purposes of this
paper, we adopt forward speed as the sole objective function.
That is, as long as the robot does not actually fall over, we
do not optimize for any form of stability (for instance in the
face of external forces from other robots).
We formulate the problem as a policy gradient reinforce-

ment learning problem by considering each possible set of
parameter assignments as defining open-loop policy that can
be executed by the robot. Assuming that the policy is differ-
entiable with respect to each of the parameters, we estimate
the policy’s gradient in parameter space, and then follow it
towards a local optimum.
Since we do not know anything about the true functional

form of the policy, we cannot calculate the gradient exactly.
Furthermore, empirically estimating the gradient by sampling
can be computationally expensive if done naively, given the
large size of the search space and the temporal cost of each
evaluation. Given the lack of accurate simulators for the Aibo,
we are forced to perform the learning entirely on real robots,
which makes efficiency a prime concern.
In this section we present an efficient method of estimat-

ing the policy gradient. It can be considered a degenerate

4http://www.cs.cmu.edu/˜AmericanOpen03/
5http://www.openr.org/robocup/. Thanks to Daniel Stronger for

hand-tuning the walks to achieve these speeds.

Goal: learn a fast AIBO walk (useful for Robocup)

AIBO walk policy is controlled by 12 numbers (elliptical loci)

Adapt these parameters by finite di↵erence policy gradient

Evaluate performance of policy by field traversal time

FREQUENCY DECOMPOSITION OF
VALUE FUNCTION

• Consider the following frequency expression for the value
of a policy
V𝜋(s0)= ∑s P𝜋(s|s0) x ∑a Q𝜋(s,a) x 𝜋(a|s)

• P𝜋(s|s0) is the stationary (limiting) frequency of reaching s
starting from s0

• We have seen an efficient dynamic programming algorithm for
computing this

33

ANALYZING POLICIES

• The frequency decomposition is often a nice way to
explain the performance of an agent
V𝜋(s0)= ∑s P𝜋(s|s0) x ∑a Q𝜋(s,a) x 𝜋(a|s)

34

How often does the
agent reach state s?

How well does the
agent do in state s?

What will the agent do
in state s?

Hockey Example
• How often does a team achieve a powerplay state (s)?
• How successful are they with powerplay (V𝜋(s))?

GENERAL APPROACH TO OPTIMIZING POLICIES

V𝜋(s0)= ∑s P𝜋(s|s0) x ∑a Q𝜋(s,a) x 𝜋(a|s)

35

Estimate observed
#visits to initial state s0

Estimate
from
data

optimize

• Amazingly, for gradient descent we can treat P and Q as fixed!

THE POLICY GRADIENT THEOREM

• Assume the policy is parametrized as 𝜋𝛉
• E.g., 𝛉 = weights in neural network

•

Then

37

Constant independent of policy

• Expected number of times (s,a) occurs under policy
• Can simply sum over all data points

Log probability of choosing
action a in state s

POLICY OPTIMIZATION OPTIONS

• Average over observed episodes one of the following.
• Monte Carlo: argmax𝜋 ∑t 𝜋(at|st) x vt(st,at)

where vt(st,at) is the observed episode return as in Monte Carlo learning
• Actor-Critic: argmax𝜋 ∑t 𝜋(at|st) x Q’(st,at)

where Q’ is a value function estimated by the critic
• Typically using TD-learning

• Advantage Actor-Critic

• replace Q’(st,at) by Q’(st,at) – V’(st) = “advantage”/impact
• Advantage values have lower variance than Q values →easier to learn
• Current state of the art
• Demo

38

https://medium.com/free-code-camp/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d
https://www.youtube.com/watch?v=zFcRJ6TwkhI

EXAMPLE: REINFORCE ALGORITHM

1. Initialize 𝛉
2. For each episode <s1,a1,r1,…,sT,aT,rT> do

 for t=1 to T do
 𝛉:= 𝛉 + ⍺ 𝚫𝛉 log(𝜋𝛉(at|st)) vt(st,at)
 end for
end for

3. Return 𝛉

40

Learning rate Estimated Return

DATA GATHERING ISSUES

41

ACTIONS INFLUENCE DATA

• A fundamental difference between RL and passive learning
is that the agent’s actions influence their observations.

ØNo fixed dataset to analyze

• Actions influence not only the rewards but also the quality
of the information the agent receives

• Hockey example: maybe we need to place risky bets to get
information about the payoffs?

42

EXPLORATION VS. EXPLOITATION

• An agent needs to do both

• Select actions that seem optimal to keep high rewards

• “exploit” its current knowledge

• Select new actions to gather enough data to estimate a value function

• “explore” the state space

43

BASIC EXPLORATION APPROACHES

• A simple but often effective approach is ε-greedy

• With probability ε, select a random action (e.g. ε =10% of the time)

• With probability 1-ε, select an action that is optimal according to the current value function

• Grid world demo with TD learning

• ε-decreasing: decrease ε with every time step
• Like a learning rate

• Policy-driven: sample actions from probabilistic policy

• Works best with policy gradient methods

• State-of-the-Art: Upper Confidence Bound (UCB)

• Estimate uncertainty in value functions at a state

• Visit states with more uncertainty more often

44

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
https://towardsdatascience.com/the-upper-confidence-bound-ucb-bandit-algorithm-c05c2bf4c13f

EXPERIENCE REPLAY

• Recall that temporally successive states have highly correlated
values

ØSuccessive updates change value functions only little

• Possible solution:

1. Store transitions st-1,at-1,rt-1, st,at
2. Sample randomly from past transitions to update

• But is throwing away temporal information really a good thing?

45

SUMMARY OF
APPROACHES

• Value-based

• Learn Value Function

• Implicit policy (e.g. ε–greedy)

• Policy-based

• No Value Function

• Learnt policy

• Actor-Critic

• Learn value function

• Learnt policy

46

SUMMARY RL

• Reinforcement learning aims to learn various key functions

• Value function, policy

• Can be naturally implemented as neural networks

• In large/infinite state spaces, need model-free learning

• Learning techniques for value functions

• Monte-Carlo: reduce to regression

• Temporal difference: make different value estimates at different times
consistent with each other

47

