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The recent excitement about neural networks

Francis Crick

The remarkable properties of some recent computer algorithms for neural networks seemed to promise
a fresh approach to understanding the computational properties of the brain. Unfortunately most of
these neural nets are unrealistic in important respects.

THERE has been a lot of excitement
recently about neural nets. A new
algorithm has produced quite simple nets
that perform surprisingly well. A thick
two-volumed work, Parallel Distributed
Processing’, has been a best-seller, read
enthusiastically by psychologists, com-
puter designers and physicists. Even
undergraduates are now designing new
networks. The interested spectator may
well wonder what it’s all about. What are
neural nets? How do they work? And
what, if anything, do they tell us about the
brain?

Neural nets are composed of ‘units’ that
have some of the properties of real
neurons®. That is, each unit has many
inputs, some of which excite it and some
of which inhibit it. The unit usually takes
a weighted sum of all the inputs and puts
out a single output, down the ‘axon’, if
the weighted sum exceeds some threshold.
In very simple nets the output may have
only two states (0 for inactive, 1 for active).
Other nets may use units with graded out-
put, in which the output scalar can be
loosely thought of as representing the
average spike rate of a neuron. Such
parallel nets are not, in most cases, built
using analogue components. Instead they
are usually simulated, rather laboriously,
on a computer.

Everyone would agree that to under-
stand the brain we must know how groups
of neurons interact. As we are sure that
many synapses are plastic, that is, they
can change their strength with experience,
it is also important to know the abstract
rules imposed on such changes by the
intricate biochemistry of a neuron. Thus
a net is characterized by the properties of
the units that make it up, the way they are
connected together, and the algorithms
used to change the strength of those con-
nections.

Memory

What have we learnt from such theoretical
models? An early discovery was that
memory could be stored in a way very
different from memory storage in a stan-
dard digital computer (see ref. 3 for a
recent historical review). This is perhaps
not too surprising. A typical computer is
made with very fast components, each

having rather few inputs and capable of
sending a pulse-coded message. Part of
each message is the ‘address’ that indicates
where a particular memory can be stored,
and part is the information to be stored.
The operation of the computer is largely
serial.

The brain is different in almost every
respect. Neurons are slow, operating in
the millisecond time range, and typically
have many hundreds or thousands of
inputs. Although many of them produce
action potentials or ‘spikes” whose distri-
bution in time is not completely random,
there is no obvious sign of precise pulse-
coded messages. Moreover the parts of the
brain seem to be highly parallel in their
operation®. How then can an assembly of
neurons-—a net—store memory?

Notice that there are three aspects of
processing a memory: putting it into the
net, storing it there over time and retriev-
ing it when required. Leaving aside
immediate or working memory, which
may be rather different, it is widely
believed that the first and third operations
(the in and the out) require neural activity,
whereas the second one—the long-term
storage—does not. The memory, so the
gospel goes, is embedded in the strength
of the numerous connections or synapses
in the network. Most neural nets also have
this character.

What has to be stored in a net is the
capacity to produce a particular pattern
of activity in a group of units. By suitably
adjusting the strengths of all the synapses,
using a simple, local rule, a net can pro-
duce a pattern, given a suitable ‘clue’. The
clue can be any smallish part of the desired
pattern. This can be done especially easily
if the net feeds back on itself. Given a part
of the input pattern, the net, by self-excita-
tion, will regenerate the whole pattern.
Such a system is called content-address-
ible, because any part of the pattern can
act on the clue, which provides the
address. Moreover, nets of a reasonable
size can store several patterns. If they are
sufficiently distinct the patterns will not
interfere with each other. Thus the system
is distributed as one memory is distributed
over many synapses; superimposed,
because one synapse can be involved in
several memories; and robust, because

altering a few synapses degrades the per-
formance very little®.

Such nets are usually simple, having a
single layer of units. Moreover they are
usually unsupervised. That is, there is no
teacher to tell the net how to adjust its
output to make it resemble the desired
one. The net learns by using an algorithm
based on an idea of Hebb®. This is a local
algorithm as it depends only on the activity
near that particular synapse: roughly, the
synapse is strengthened if it receives an
input signal on the presynaptic side,
together with some indication of activity,
such as the unit firing, on the postsynaptic
side.

Back propagation

Memory, however, is not the only thing
the brain needs to achieve. Another type
of useful net is one that can extract
categories. That is, it must search for regu-
larities and correlations in the incoming
signals and try to embody them in some
way in its performance. It turns out that
a single layer of units without feedback
has severe limitations®. Even if each unit
is told after each trial whether it should
have fired faster or slower, a procedure
known as supervised learning, it cannot
be trained to perform even quite simple
operations. The classic example is the
exclusive OR (A, or B, but not both A and
B). This can easily be done if a net of
several layers is allowed. Unfortunately
this leads to a problem: of all the various
synapses, which ones should be adjusted
to improve performance? This s
especially acute if the synapses lie on
several different layers of neurons.

The recent excitement has sprung
mainly from a neat algorithm which solves
this problem surprisingly well”. The full
name of the algorithm is ‘the back propa-
gation of errors’ but it is often called back-
prop for short. It can be applied to any
number of layers, although only three
layers are usually used: an input layer, a
middle layer (referred to as the hidden
units) and an output layer. A unit in each
of the first two layers connects to all units
in the layer immediately above (Fig. 1).
There are no reverse connections or side-
ways connections—a simple net indeed.
Each unit forms the usual weighted sum
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of its inputs and emits a graded output.

The net works as follows. It is first set
up with random connections. A particular
input is then given to it, which produces
activity in the output layer. A teacher, who
knows what the response of each output
unit should be for that particular input,
indicates to each unit the size and sign of
its error. For a theoretical model, the
teacher is usually the person designing the
net. In the brain the teacher is presumed
to be another part of the brain. The error
signals are used to adjust the weights of
all the connections to the top or output
layer and this information is ‘back-propa-
gated’ to the hidden units in the middle
layer. They use this information to adjust
their synapses, which come from the axons
of the input units. The exact way this is
done conforms to common sense, but non-
mathematicians often find the algebra
rather daunting, so I will not attempt to
describe it here’.

It can be shown that, in effect, these
adjustments are equivalent to a method of
gradient descent’. This means that the
algorithm used makes a small adjustment
to the strength of each synapse, in such a
way that each alteration reduces the total
error in the performance of the net.
Applied repeatedly, this necessarily leads
to a minimum in the total error. It is well
known that such methods run the risk of
being trapped in a local minimum’, which
may be far above the global minimum. But
in these nets this rarely happens, probably
because of the many units involved and
because of their graded response.
Moreover the absolute global minimum is
usually not required, only a sufficiently
deep one.

NETtalk

The results that can be achieved with such
simple nets are astonishing. A striking
example, due to Sejnowski and Rosen-
berg®, is called NETtalk, whose task is to
learn to pronounce English. It takes an
English text as its input (Fig. 2) and its
output is fed to a machine that can pro-
duce voice sounds. At first, having only
random connections, it babbles, but
gradually, as training proceeds, it starts to
speak more intelligibly. Eventually, when
tested with a text it has never seen before,
it produces quite passable English speech,
with about 90% accuracy (it could never
be 100% correct because pronunciation
depends somewhat on context in English,
and the network knows nothing of mean-
ing). Thus it has learned the rules of
English  pronunciation, which are
notoriously not straightforward, in a tacit
manner, from examples only, and not
because the rules have been explicitly
embodied in some program.

How does it do this? It is relatively easy,
once such a net has been trained, to
examine the ‘receptive fields’ of all the
units in the hidden layer (by ‘receptive’

Output patterns

Input patterns
Fig. 1

A multilayer network. The internal representation units are sometimes termed hidden
units. The information coming to the input units is recoded into an internal representation
and the outputs are generated by the internal representation rather than by the original pattern.
Input patterns can always be encoded, if there are enough hidden units, in a form such that
the appropriate output pattern can be generated from any input pattern. (Reproduced, with
permission, from ref. 1).
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field is meant those features of the environ-
ment to which the unit responds). The
results are remarkable®. The required
information about categories is distributed
across these neurons, because all informa-
tion has to pass through the hidden layer,
but not by any means in a random fashion.
The hidden units have latched on to sig-
nificant aspects of English speech, such as
the difference between vowels and con-
sonants, and indeed the different sub-
classes of these categories.

Further studies® have shown that it is
important to have the correct number of
hidden units. With too few, the net simply
cannot do the job. Too many, and, al-
though the net works a little better, it does
not generalize as well—it fails on English
text it has not been trained on. It has
become, as it were, merely a look-up table.
But given the correct number of hidden
units it will extract significant categories,
which it can use successfully on untested
material of the same general kind.

This is not the only example. Other
striking applications are to the problem of
deducing the secondary structure of a pro-
tein from its amino-acid sequence®, the
distinction between rocks and unmention-
able metal objects on the sea bottom'® and
the derivation of shape from shading'’.

The last example also teaches us a
further lesson. The units produced in the
shape-from-shading problem turn out to
be rather like edge or line detectors in the
visual cortex. This alerts us to the fact that
the receptive field of a neuron, by itself,
does not necessarily tell us what its main
function is. This also will depend on where

such a neuron projects, its ‘projective field’
as it has been called''.

Neural nets and the brain

It is hardly surprising that such achieve-
ments have produced a heady sense of
euphoria. But is this what the brain
actually does? Alas, the back-drop nets
are unrealistic in almost every respect, as
indeed some of their inventors have
admitted. They usually violate the rule that
the outputs of a single neuron, at least
in the neocortex, are either excitatory
synapses or inhibitory ones, but not both'?.
It is also extremely difficult to see how
neurons would implement the back-prop
algorithm. Taken at its face value this
seems to require the rapid transmission of
information backwards along the axon,
that is, antidromically from each of its
synapses. It seems highly unlikely that this
actually happens in the brain. Attempts to
make more realistic nets to do this'?,
though ingenious, seem to me to be very
forced. Moreover the theorists working on

. McClelland, J. L., Rumelhart, D. E. & PDP Research Group
(eds) Parallel Distributed Processing (MIT, Cambridge,
Massachusetts, 1986).

2. Rumelhart, D. E., Hinton, G. E. & McCleiland, J. L. in
Parallel Distributed Processing (eds McClelland, J. L.,
Rumelhart, D. E. & the PDP Research Group) 45-76
(MIT, Cambridge, Massachusetts, 1986).

3. Cowan, J. D. & Sharp, D. H. Proc. Am. Acad. Arts Sci. 117,
85-121 (1988).

4. Van Essen, D. C. in Cerebral Cortex Vol. 3 {eds Peters, A.
& Jones, F. G.) 259-324 (Plenum, New York, 1985).

5. Hopfield, J. J. Proc. natn. Acad. Sci. U.S.A. 19, 2554-2558
(1982).

6. Hebb, D. O. Organization of Behavior (Wiley, New York,
1949).

7. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. in Parallel



NATURE VOL. 337 12 JANUARY 1989

131

COMMENTARY

the subject are so remote from actual
neurons that they have been cavalier in
omitting one type of unit altogether.
Obviously there should be a unit to com-
pare the output of each output neuron
with the signals from the teacher, in order
to calculate the error (in back-prop nets
this is done by the computer). Such a set
of neurons, if they exist, should have novel
properties and would be worth looking
for, but there is no sign of back-prop advo-
cates clamouring at the doors of neuro-
scientists, begging them to search for such
neurons.

There are many return pathways in the
brain?, but we do not yet know if any of
them act as one of the proposed teachers.
Notice that to send separate teaching sig-
nals to each output neuron, a pathway
must carry a lot of detailed information.
We do indeed see diffuse pathways, such
as that from the locus coeruleus, but one
such neuron sends much the same signal
to many parts of the brain, so that the
information it can convey is somewhat
limited and certainly would not be enough
to control back-propagation. It may of
course be used to tell the system when
something is worth remembering. Models
along these lines have been suggested, for
example by Barto®.

Another problem is that though the
back-prop algorithm can be generalized to
a system with several successive hidden
layers, it becomes extremely cumbersome.
An ingenious way round this, suggested
by Hinton'?, is to train the net to make its
output exactly the same as its input. This
still allows the hidden layer to extract
categories. In such a system the true output
is taken directly from this hidden layer
and made the input for the next set of nets.
This allows any number of nets to be
stacked on top of each other. If this were
combined with a diffuse signal to indicate
that something worth remembering has
occurred, it begins to have some faint
resemblance to what we see in the brain,
but we are still stuck with the problem of
how to implement back propagation real-
istically. Obviously what is really required
is a brain-like algorithm which produces
results of the same general character as
back propagation. Another objection is
that the back-prop algorithm is too slow,
though it is not easy to make this argument

Output units
Hidden units

Input units
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Fig. 2 A schematic drawing of the NETtalk network architecture, a specific example of the

general scheme in Fig. 1. A window of seven ‘letters’ in an English text (‘a cat’ here) is fed

to an array of 203 input units. Information from these units is transformed by an intermediate

layer of 80 ‘hidden’ units to produce patterns of activity in 26 output units. The connections

in the network are specified by a total of 18,629 weight parameters, including a variable
threshold for each unit. Reproduced, with permission, from ref. 8.
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which can work rather faster'®.

Most of these neural ‘models’ are not
therefore really models at all, because they
do not correspond sufficiently closely to
the real thing. T have suggested elsewhere!’
that they be called ‘demonstrations’. They
refute the claim that it is impossible for
any neural net to act in such-and-such a
way, but they may not perform in just the
way the brain does. In another context
they might reasonably be referred to as
existence proofs. As such they have a cer-
tain use. The back-propagation algorithm
can be used to generate a set of useful
synaptic weights. This may not be the way
the brain arrives at them—it may use some
other more realistic algorithm—but the
resulting receptive fields may, in their gen-
eral character, be somewhat similar to
those the brain has arrived at. This can be
tested experimentally.

A good example of this approach is the
work of Zipser and Andersen'®, modelling
a subset of posterior parietal neurons in
the macaque monkey. Another promising
case is the modelling of the vestibulo-
ocular reflex'®. In both, the character of
the hidden units produced by back propa-
gation is somewhat similar to what is
found in electrophysiological recordings.
Nevertheless, as far as the learning process
is concerned, it is unlikely that the brain
actually uses back propagation. In spite
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with widespread enthusiasm.

Why the excitement?

How has this curious situation arisen?
Apart from a few enthusiasts, most
theorists do not believe that, for example,
children really learn to speak using a
single, simple back-prop network inside
their heads. Why, then, are such models
considered not only useful, but exciting?

To understand this we have to look at
the structure and history of the various
disciplines involved. It comes as a surprise
to neuroscientists to discover that many
psychologists, linguists in particular, have
very little or no interest in the actual brain,
or at least what goes on inside it. The brain,
they feel, is far too complicated to under-
stand. Far better to produce simple models
which can do the job in an intelligible
manner. That such models may have little
resemblance to the way the brain actually
behaves is not seen as a serious criticism.
If it describes, in a succinct way, some of
the psychological data, what can be wrong
with that? Notice, however, that by using
such arguments, one could easily make a
good case for alchemy or for the existence
of phlogiston.

The position is complicated by the fact
that there is another application for
network models: to assist in the design of
novel, highly parallel computers. For this
it makes no difference how the brain works

i and it is in this general area that most

advances are now being made. Eventually,
of course, the computer circuitry will have
to be embodied in some sort of chip, which
will bring its own design problems. The
back-prop algorithm can be used to
develop a good set of weights for special
purpose chips, though eventually more
versatile chips will be needed, with
modifiable connections. Meanwhile, so
the argument goes, why not develop
networks and algorithms to see which sys-
tems perform best. With luck this may give
theorists some experience of how complex
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non-linear nets behave in practice.
Whether this experience can usefully be
applied to models of the brain remains to
be seen.

I also suspect that within most
modellers a frustrated mathematician is
trying to unfold his wings. It is not enough
to make something that works. How much
better if it can be shown to embody some
powerful general principle for handling
information, expressible in a deep mathe-
matical form, if only to give an air of
intellectual respectibility to an otherwise
rather low-brow enterprise.

At the bottom, one has to realize that
these various activities, though
superficially similar, are of a radically
different kind. Constructing a machine
that works (such as a highly parallel com-
puter) is an engineering problem.
Engineering is often based on science but
its aim is different. A successful piece of
engineering is a machine which does
something useful. Understanding the
brain, on the other hand, is a scientific
problem. The brain is given to us, the
product of a long evolution. We do not
want to know how it might work but how
it actually does work. This has been called
‘reverse engineering’—trying to
unscramble what someone else has
made—but as has been pointed out, it is
reverse engineering?® on the products of
an alien technology?'.

And what a technology! Natural selec-
tion is not a clean designer. As Frangois
Jacob?* has pointed out, evolution is a
tinkerer. It has, broadly speaking, to build
on what went before. It can take a simple,
straightforward process, such as DNA
replication, and embroider it with any
amount of gadgetry to make it work a little
better. It is opportunistic: anything will
do as long as it works. Naturally it is
constrained by both chemistry and
physics, but this does not necessarily mean
that its mechanism will embody deep gen-
eral principles; the structure of the genetic
code is a good example of this. It may
prefer a series of slick tricks to achieve its
aim?. Only a close inspection of the
gadgetry will tell.

And this brings us to the crux of the
matter. Why not look inside the brain, both
to get new ideas and to test existing ones?
The usual answer given by psychologists
is that the details of the brain are so hor-
rendously complicated that no good will
come of cramming one’s head with that
sort of information. To which the obvious
reply is, “If it’s as complicated as that,
how do you hope to unscramble its work-
ings by a purely black-box approach, by
merely looking at its inputs and outputs?”

By looking inside the brain we now
strongly suspect that in important cases,
at least in vertebrates’ synaptic
modification depends on the behavior of
the NMDA-type glutamate receptor (see,
for example, various articles in ref. 24).
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This receptor works on a slightly slower
timescale than the other glutamate recep-
tors. It will open only if it has received
the neurotransmitter glutamate, or some-
thing like it, during the recent past, pro-
vided the local negative voltage of the cell
membrane has become somewhat more
positive than the normal resting potential
as a result of other inputs. When it does
open, it lets in a lot of calcium ions,
thought to be one of the initial signals in
the complicated process of synaptic
modification. It is thus ideally suited to
perform associative learning.

Models embodying behaviour of the
NMDA receptor would be most welcome
and indeed such work is already in pro-
gress (D. E. Rumelhart, personal com-
munication). As the weight of an NMDA
receptor depends on the activity of neigh-
bouring synapses in altering the mem-

brane potential, this opens the possibility
of multiplicative interactions between
synapses. We urgently need to know the
exact location of NMDA receptors on
neurons of all types and also the origin of
the axons from which they receive gluta-
mate. Learning about neurons, their
behaviour and their connections will not
by itself solve our problems, but will at
least suggest the sort of answers to look
for and can be used, often rather decis-
ively, to disprove false theories.
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