Convolutional Neural Nets

Oliver Schulte
Simon Fraser University
Introduction to Deep Learning

Further Notes with Demos
Overview

- CNNs are appropriate for data with a grid structure
 - In 1D: a sequence
 - In 2D: a grid (e.g. image with pixels)

- Two key ideas:
 1. Slide fixed-size window over image/sequence/sentence = feature map
 2. 1 hidden node represents window activation at 1 position
 ➔ can repeat sliding window idea to obtain higher-level features

- Assumes maximum-length input
Hierarchical Features

[From recent Yann LeCun slides]
Filters
1D Example

- Want to classify a sentence as spam-like or not.
- Assume all sentences have at most 5 words e.g.
 - “I am a Nigerian Prince”
 - “You can get rich quick”
Window Size 2

- Boolean Feature/Filter 1: “Nigerian Prince”
- Boolean Feature/Filter 2: “get rich”
- 2 Filters x 4 window positions = 8 Features
Trainable Filters

- As with basis functions, train weights to learn filters rather than hardcode them
- Since all red nodes compute the same feature, they use the same weights
 - an example of parameter tying
- Similarly we have 2 more weights w_3 and w_4 for the green filter (not shown)
Padding

- How can we apply a binary filter to the last word?
- Answer 1: You can’t (see above).
- Answer 2: We can pad the sentence with a * or 0 input
2D Version

- Think images with pixels
 - More reasonable to assume fixed maximum size
- Filter = small window size
- Slide over different positions
- May have to add 0s at boundary point ("zero-padding")
- cnn2d-example.pdf
Deep CNN
Hierarchical Filters

- Neat Insight: Can use the same sliding window idea on the features in the first hidden layer.
- And the second, the third, etc
- Each convolutional layer generates higher-level features that cover a larger part of the input
Example Architecture
Convolutional Layer

- Stride: how far to move the filter horizontally/vertically.
 - Common values: 1, 2
- What if filter goes over the edge?
 - Zero-padding: add "imaginary" 0 pixels (see Stanford)
 - Textbook/Tensorflow:
 - Same = zero-padding
 - Valid = stop when boundary is reached
- Biases: can add a fixed constant to each filter value
Convolution

- Convolution of two vectors = sum element-wise products. E.g.
 - \((1,2,3) \ast (4,5,6) = 4+10+18=32\)
- Convolution of two matrices \(A \ast B = \) sum element-wise products.
- Convolution computation:
 1. Fix grid patch \(p\) and filter \(f\) of the same shape.
 2. \(\text{Output}(p,f) = 0\)
 3. For each channel \(c = 1,\ldots,C\)
 \(\text{Output}(p,f) +\text{grid}(p,c) \ast f\)
 End for
 4. \(\text{Output}(p,f) + f.\text{bias}\)
- Produces one number for each patch-filter combination
- **CNN Demo** and Homework Exercise. **Visualization.**
Alternating Layers

- Typical alternative types of layers:
 - convolutional (sliding window)
 - standard feed-forward to combine extracted features (relu)
 - pooling: extract fixed feature from window, e.g. max

![Single depth slice](image)

- max pool with 2x2 filters and stride 2
CNN and Adversarial Examples

- “Deep Neural Nets are Easily Fooled”
 - Video
 - Paper
Conclusion

- Convolutional Neural Networks are widely used in computer vision
- Assume maximum input size
- Given fixed maximum, can set up neural network where hidden node computes learned feature of small fixed window
 - The neural net encodes knowledge of 2D topology
 - Apply another feature map to hidden layer ➔ hierarchical feature learning